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16 Fresnel’s problem for a topological insulator

The optical properties of a remarkable class of materials called topological insulators (TI) are
captured by constitutive relations which involve the fine structure constant α = (e2/~c)/(4πε0).
With α0 = α

√
ε0/µ0, the relations are

D = εE − α0B H =
B

µ
+ α0E.

(a) Begin with the Maxwell equations in matter with no free charge or current. Show that a
monochromatic plane wave of (E,B) is a solution of these equations for a TI and find the
wave speed.

(b) A plane wave with linear polarization impinges at normal incidence on the flat surface of a
TI. Show that the transmitted wave remains linearly polarized with its electric field rotated
by an angle θF. This is called Faraday rotation of the plane of polarization.

(c) Show that the reflected wave remains linearly polarized with its electric field rotated by an
angle θK. This is called Kerr rotation of the plane of polarization.

17 The Lorenz–Lorentz and Drude formulae

Let the dielectric function ε(ω) = ε0n
2(ω) characterize a macroscopic sphere of matter composed

of N electrons. If the wavelength of the incident field is large compared to the sphere radius a,
it is legitimate to use a quasistatic approximation. This problem equates two expressions for the
polarization P (t) to find ε(ω).

(a) Solve a quasi-electrostatic boundary value problem to find P (t) of the homogeneously pola-
rized sphere when it is exposed to an external electric field E0 cos(ωt).

(b) Let the sphere have polarization P (t) = P0 cos(ωt). Assume that each electron within the
sphere is a lossless classical harmonic oscillator, where an electron displaced by r from its
initial position is subjected to a restoring acceleration −ω2

0r. Sum the dipole moments from
all the electrons and equate the resulting polarization to the result of part (a) to get the
Lorenz–Lorentz formula,

3
n2(ω)− 1

n2(ω) + 2
=

ω2
p

ω2
0 − ω2

,

with the plasma frequency ω2
p = n0e

2/mε0 and the number density n0 = 3N/4πa3.

(c) Show that this reduces to the Drude formula for high frequencies,

n2(ω) = 1−
ω2
p

ω2
.

18 Loss and gain media

Consider the Lorentz-type index of refraction

n2(ω) = 1 +
fω2

p

ω2
0 − ω2 − iωΓ

The damping constant Γ > 0 and f is called the oscillator strength. Assume |f | � 1.

(a) Produce an argument based on monochromatic plane wave propagation that f > 0 describes
an absorbing medium (like a conventional dielectric) that extracts energy from the field while
f < 0 describes a gain medium (like a population of inverted atoms in a laser cavity) that
supplies energy to the field.
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(b) A wave packet propagates a distance LA through an absorbing medium with fA > 0 im-
mediately after it propagates a distance LG through a gain medium with fG < 0. Under
what conditions does the packet emerge undistorted from the absorbing medium? Hint: Do
not make a group velocity (or any other) approximation to the sum of monochromatic plane
waves that constitutes the packet.

19 Lorentz-model sum rule

The Lorentz-model dielectric function ε(ω)/ε0 = n2(ω) given in problem 18 with f = 1 satisfies
the f-sum rule ∫ ∞

0

dω ω Im ε(ω) =
π

2
ε0 ω

2
p.

Show this explicitly for the case when the damping constant Γ is small.

20 Parseval’s relation

(a) ∆(x) is an acceptable representation of a delta function if ∆(0) diverges and if it “filters” any
smooth test function f(x):

∫∞
−∞ dx f(x)∆(x) = f(0). Show that these properties are satisfied

by

∆(x) =
1

π2

∫ ∞
−∞

dy

y(y − x)
.

(b) Let the real and imaginary parts of χ(ω) = χ1(ω) + iχ2(ω) satisfy the Kramers–Kronig
relations. Use ∆(x) in part (a) to prove Parseval’s relation,∫ ∞

−∞
dω |χ1(ω)|2 =

∫ ∞
−∞

dω |χ2(ω)|2.

21 A paramagnetic microwave amplifier

Let a transverse electromagnetic wave H = x̂Hx exp [i(ky − ωt)] propagate in a linear magnetic
medium exposed to a static magnetic field B = Bzẑ. If γ and τ are constants, experiment shows
that the induced magnetization obeys

dM

dt
= γ(M ×B)− |M |

τ
(M̂ − ẑ).

(a) The first term on the right describes precession of the magnetization vector. The second
term on the right side accounts (phenomenologically) for loss mechanisms that drive the
system toward equilibrium (where M is aligned with the external field). Confirm this claim
by computing M(t) when γ = 0

(b) Let ω2
0 = γ2µ0BzHz and show that

d2Mx

dt2
+

2

τ

dMx

dt
+
(
ω2
0 + τ−2

)
Mx = ω2

0

Mz

Hz
Hx.

Use this information to find the real and imaginary parts of the complex magnetic permea-
bility µ(ω). Establish that the magnetic permeability of the system is

µ(ω) = µ0

(
1 +

ω2
0

ω2
0 + τ−2 − ω(ω + 2i/τ)

Mz

Hz

)
.

(c) Derive a wave equation for this medium and relate the real and imaginary parts of k to the
real and imaginary parts of µ and to ε (assumed real, positive, and constant). Prove that
the amplitude of the H-wave given above decreases (increases) as it propagates if Mz/Hz is
positive (negative).

Remark: Given the result in (c), amplification of the wave occurs only if we supply energy to
“pump” the system into the higher energy state with M anti-parallel to H. This is the analog of
producing a “population inversion” to initiate laser action in an active medium.
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