4. Plenum Statistische Physik II UE, 20.05.2019

1. Experimentelle Bestimmung des komplexe Brechungsindex

Um die optischen Eigenschaften eines Materials zu bestimmen, wird elektromagnetische Strahlung mit Kreisfrequenz ω an einer ebenen polierten Oberfläche des Materials, unter normalem Einfallswinkel reflektiert und das Reflexionsvermögen

$$R(\omega) = \frac{I_{\rm aus}(\omega)}{I_{\rm ein}(\omega)}$$

über einen weiten Frequenzbereich gemessen.

- a) Auf TUWEL finden Sie Messwerte für das Reflexionsvermögen $R(\omega)$ von Aluminium. Berechnen Sie damit numerisch den komplexen Brechungsindex $n(\omega) = n_r(\omega) + in_i(\omega)$.
- b) Vergleichen Sie mit dem komplexen Brechungsindex, der vom Drude-Modell mit Parameter $\omega_p^2 = \frac{n_e e^2}{m \varepsilon_0} = 15 \, \mathrm{eV}$ und $\gamma = 0.4 \, \mathrm{eV}$ vorhergesagt wird. Diskutieren Sie eventuelle Unterschiede.

2. Weiterführende Analyse des Gleichgewichtszustandes

Gegeben sei die folgende stochastische Differentialgleichung

$$\dot{Y}(t) = -aY(t) + b\zeta(t),$$

wobei die stochastische Variable $\zeta(t)$ ungerichtet $\langle \zeta(t) \rangle = 0$, aber nicht notwendigerweise unkorreliert ist $\langle \zeta(t)\zeta(t') \rangle = \phi(t-t')$. Das System befindet sich im Gleichgewichtszustand.

a) Argumentieren Sie warum das Zeitmittel und das Ensemblemittel

$$\bar{B} = \frac{1}{T} \int_T B(Y(t))dt$$
 und $\langle B \rangle = \int B(Y) w_\infty(Y) dY$

einer Observable B(Y) im Gleichgewichtszustand äquivalent sind.

b) Die zur Autokorrelationsfunktion $C_{YY}(t) = \langle Y(\tau)Y(\tau+t)\rangle$ gehörende Fouriertransformation $\tilde{C}_{YY}(\omega)$ wird als spektrale Leistungsdichte bezeichnet. Zeigen Sie, dass der Zusammenhang zwischen spektraler Leistungsdichte $\tilde{C}_{YY}(\omega)$ und den harmonischen Komponenten des stochastischen Prozesses Y(t) durch

$$\tilde{C}_{YY}(\omega) = \lim_{T \to \infty} \frac{|\tilde{Y}_T(\omega)|^2}{T}$$
 mit $\tilde{Y}_T(\omega) = \int_T Y(t)e^{-i\omega t}dt$

gegeben ist.

c) Zeigen Sie, dass zwischen den spektralen Leistungsdichten $\tilde{C}_{YY}(\omega)$ und $\tilde{C}_{\zeta\zeta}(\omega)$ der folgende Zusammenhang gilt

$$\tilde{C}_{YY}(\omega) = \frac{b^2 \tilde{C}_{\zeta\zeta}(\omega)}{\omega^2 + a^2} = \frac{b^2 \phi(\omega)}{\omega^2 + a^2}.$$

d) Berechnen Sie $C_{YY}(t)$ im Fall $\phi(t) = \delta(t)$ durch Rücktransformation von $\tilde{C}_{YY}(\omega)$.

1