
1

2. CMS exercise: Impurity Green’s function of the Anderson
impurity model with Exact Diagonalization

Introduction

Solving the Anderson Impurity Model (AIM) represents a very important first step in several

different contexts of computational material science, such as the study of nanoscopic systems,

impurity scattering, and metal-insulator transitions in bulk systems, e.g., via the Dynamical

Mean Field Theory (more about the latter in the last CMS exercise). With the exception of some

limiting cases, such as U = 0 (non-interacting case) or all V = 0 (“atomic” limit), where even

an analytical calculation is possible, the solution of an AIM can be obtained numerically with

high precision through several techninques (Exact Diagonalization and/or Lanczos, Numerical

Renormalization Group, Density Matrix Renormalization Group). Here, we will consider the

most “transparent” solver, e.g., Exact Diagonalization (at finite temperature). More details

about exact diagonalization (ED) codes for the numerical solution of the AIM can be also found

in the Dynamical Mean Field Theory review article by A. Georges, et al., Dynamical mean-field

theory of strongly correlated fermion systems and the limit of infinite dimensions in Review of

Modern Physics 68, 13 (1996), and in the references therein.

Files for the exercise

In the folder UE AIM 2013 on your computer you find a specific version of an ED impurity solver

with some comments related to this exercise. In particular the folder UE AIM 2013 contains the

following files:

1. ed aim CMS.f: Fortran code

2. run.scr: shell script for compiling and running the code

3. init.h: supplementary file with the definition of the important parameter nmaxx, which

sets the size of your arrays depending how many levels (Ns) are you including for the

(discretized) parametrization of your ED problem. Ns = Nhost + 1, since one has to

include, beyond the the impurity site, a finite number (Nhost) of host electronic levels.

4. hubb.dat: input file for values of inverse temperature β = 1/T , Hubbard interaction

strength U , the extremes of your real frequency range (variable wup, wlow) and the

lorzentian broadening δ (variable “deltino”). The other parameters contained in hubb.dat

need not be changed.

5. hubb.andpar: input values of on-site energies of the host levels (array Epsk(2, · · · , Ns))

and hybridizations V (array tpar(2, · · · , Ns)). Note, instead, that the energy value of the

impurity site εd = Epsk(1) is read as chemical potential, i.e., as a last entry in hubb.andpar

(but, watch out! µ = −εd). The “half-filling” condition (〈nimp〉 = 1) is obtained for a

“symmetric” choice of the host lattice parameters (ε and V) and µ = U/2.

To run the program, simply execute the script run.scr from command line. If the program

runs properly it will produce the following files

2

1. Gw.dat XXX where XXX is a text string defined when running run.scr which will contain

the spectrum (goal of the present exercise)

2. out XXX containing the standard output

Changes to the code

In the present form, the code produces only a Green’s array, filled with zeros. The lines where

the retarded Green’s function is computed on the real-axis (more precisely on ω + iδ, with

δ → 0+) have to be added. This should done directly in the subroutine Gw CMS, which is called

right after the subroutine diag. Specifically the array Gwreal (already defined) will be passed

as an argument of subroutine Gw CMS and printed out on file Gw.dat XXX in the main program.

All missing lines are marked by the following comment:

CMSUebung*************

find all of them and insert the missing pieces or remove the commented lines if these are necessary,

up to line

The definition (“Lehmann representation”) of the retarded impurity Green’s function to be

used has been given in the lecture:

Gretd (ω) =
1

Z

∑
n,m

(
〈n|d†↑|m〉

)2
ω + iδ − (En − Em)

(
e−βEn + e−βEm

)
(1)

• complex array Gwreal is declared at the beginning of the program (and in the subroutine

Gw CMS)

• β is written in variable beta, otherwises all other ingredients for your Lehmann repre-

sentation of Gretd (ω) will be calculated (and provided) by the diagonalization subroutine

diag

• the partition function Z, is calculated in diag, and written in the variable zpart.

• The ED obviuosly exploits the block-structure of the AIM Hamiltonian, which is de-

fined by the couple of quantum numbers (N↑,N↓). Hence, the indexes of the eigenvec-

tors/eigenenergies arrays are (or have to be arranged) in such a block structure. More

details about the block-structure are given right at the end of this exercise sheet. Note

that all index variables mentioned in that subsection are already defined in the program,

and you can use them for your purposes.

• all Eigenenergies Em, En are written in the two-index array eigCMS(m, i), whose last

index i defines the block to which the eigenvalue Em belongs, and m identifies the specific

eigenvalue in this block.

3

• the values of the (squared) matrix elements
(
〈m|d†↑|n〉

)2
are written in the array rlehm(m,n, i),

which is defined by three indexes (as before, the last one i defines to which block of the

Hamiltonian the eigenvector labelled by the first index m belongs).

• to define the frequency omr it is useful to use the parameter Iwmaxreal, Xi (complex i),

deltino (lorentzian broadening), and wup,wlow (extremes of the frequency range), which

are already defined.

• for testing, do not increase too much the size of the system (impurity + host bath) (set by

the variable Ns, declared inside file init.h). This can be made larger, later, to produce a

nicer spectrum after the code works.

• test of your program: compare your Green’s function to file Gw check, which refers to

the following set of parameters: Ns = 4, β = 50, U = 40, µ = 20, bath energies ε =

(−1.9,−0.01, 1.9), hybridizations V = (0.4, 0.17, 0.4), lorentzian broadening δ = 0.1.

Additional info: Block structure of the AIM Hamiltonian

The AIM has a block diagonal form. For a given system size (Ns) each block sector can be

classified by the couple of quantum numbers (N↑ = 0, 1, ..., Ns, N↓ = 0, 1, .., Ns). The different

blocks are labelled by an index indblock running from 1 to nblock. The block order is related to

the quantum numbers (N↑ = 0, 1, ..., Ns, N↓ = 0, 1, .., Ns), according to the following labelling

prescription: indblock = N↑+ (Ns + 1)×N↓+ 1. With this choice the first block (indblock = 1)

is the empty one (i.e., N↑ = 0, N↓ = 0), the second has a single spin ↑, etc..., and the last

one (indblock = nblock) is the fully occupied one (N↑ = Ns, N↓ = Ns). Each block has a

size of nleng × nleng, and the value of nleng is written in the variable nleng(indblock) with

indblock = 1, ..., nblock.

Purpose of the exercise

First of all try to understand, (i) why it is convenient to work in the given (N↑, N↓) block

structure, and (ii) which blocks are actually connected by the matrix elements of the Lehmann

representation. Then, after having modified and tested the code with the benchmark data

(iii), use it to calculate (iv) the non interacting case and (v) the atomic limit. Finally (vi),

considering the particle-hole symmetric case εd = −µ = −U
2 produce some spectra for the generic

case of intermediate-small values of U and follow the central (Kondo-like) peak as a function

of temperature and of hybridization strength. Please report per e-mail your considerations,

comments and numerical results for all points (i), ..., (vi), in a unique .pdf file, and attach

additionally your source file (*.f).

Viel Spaß ... und Erfolg!

