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In this exercise, we will learn more advanced features of wien2k, cal-
culate maximally localized Wannier functions using wien2wannier

and wannier90, and use them to construct a simple, yet realistic tight-
binding Hamiltonian.

We assume that wien2k version 14.2 is configured for your account
and that you already know how to perform standard band-structure
calculations. Should it not be the case, please start with the first exer-
cise. A reminder: Chapter 3 of the wien2k documentation available at
www.wien2k.at/reg_user/textbooks/usersguide.pdf provides a step-by-step
guide.

Upon completion of all tasks, please send the answers to the num-
bered questions (in the margins) to O. Janson (janson@ifp.tuwien.ac.at)
and Prof. K. Held (held@ifp.tuwien.ac.at).

To log in, please use your existing login name and the password.

Figure 1: The crystal structure of
PbVO3 featuring VO5 pyramids.

A necessary preparatory step includes a GGA calculation for the
tetragonal PbVO3 structure:

Wyckoff
Site position x/a y/b z/c

V 1a 0 0 0
Pb 1b 1/2 1/2 0.5708

O(1) 1a 0 0 0.358
O(2) 2c 1/2 0 −0.1194

Table 1: The structure of PbVO3.
The lattice constants are a = 3.80 Å,
c = 4.67 Å, the space group is P4mm (99).
Data from R. V. Shpanchenko et. al,
Chem. Mater. 16, 3267 (2004).

Perform a non-spin-polarized calculation using RKMAX = 6.5 on a
grid of 200 k-points. For other parameters, use the default values.

mailto:janson@ifp.tuwien.ac.at
https://dx.doi.org/10.1021/cm049310x
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Plotting DOS and the band structure

1. You already have a converged density on a very sparse k-mesh.
Use a denser k-mesh of 800 points to calculate DOS. Set the pa-
rameters in the input file for TETRA such that you get a reason-
ably good resolution for the energy range of interest (∼±1 eV
around the Fermi energy). You can directly access the DOS values Q1 Report the values for (i) the total

DOS and (ii) the V d contribution at the
Fermi energy.

in the files case.dos1 and case.dos1ev.

2. To perform a band structure calculation, we need to prepare a
suitable k-path first. To this end, you can open your struct file
using the program xcrysden which can be called from a terminal
window (here, we assume that your case is named “PbVO3” and
you are in the home directory):

~/../cms00/XCrySDen-1.5.25-bin-semishared/xcrysden --wien_kpath WIEN2k/PbVO3/PbVO3.struct

Select the Γ–X–M–Γ–Z path:

On the next screen, the total number of k-points should be 200.
Save the file and copy it to your case directory (e.g., “WIEN2k/PbVO3”)
under the name 〈case〉.klist_band (e.g., “PbVO3.klist_band”).
Then go back to your browser window and proceed with the band
structure calculation, but skip the first step, as otherwise your
〈case〉.klist_band file will be overwritten. Q2 How many times do the bands cross

the Fermi level? (plot the −0.1...0.1 eV
energy range to check)
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3. With a little knowledge of chemistry, we can readily guess that the
bands at the Fermi level should be V 3d states (you can however
easily check it with wien2k). The next point is to figure out the
orbital character of the half-filled band crossing the Fermi level.
This can be done by plotting the band characters. The functionality
of the web interface is not great for this particular task, so we need
to go back to the terminal and inspect the file 〈case〉.qtl to figure
out the indices of different orbitals:

...

JATOM 1 MULT= 1 ISPLIT=-2 tot,0,1,PZ,PX+PY,2,DZ2,DXY,DX2Y2,DXZ+DYZ,3

...

Here, V is “JATOM 1” (the same order as in the struct file) and
its d orbitals have column indices 7 to 10 (note that xz and yz
orbitals are degenerate). Then we go back to the web interface and
edit the 〈case〉.insp file by adding one more line below the “0 1

0.2” line. For instance, to plot the band characters for the x2 − y2

orbital (the 9
th column), you add

1 9 0.2

Check the band character accordingly for all the d orbitals. Q3 Which V 3d orbital is half-filled?

Calculating the maximally localized Wannier functions

4. We figured out the band character of the half-filled orbital (let’s
call it D orbital), and our next big goal is to construct an effective
one-orbital tight-binding model. This model needs to be param-
eterized and the best way to do it is to calculate the respective
maximally localized Wannier function (MLWF). This is done via
the wien2wannier interface by the wannier90 program. Both codes
are very well documented, so we’ll keep the discussion very short
here. For a detailed explanation of all steps and the description of
the input files please refer to

www.wien2k.at/reg_user/textbooks/wien2wannier_userguide.pdf
and
www.wannier.org/doc/user_guide.pdf.

The calculations are done in a separate folder and can not be
performed using the web interface. Again, we have to go back to
the terminal, cd to the case directory and execute there:

prepare_w2wdir ../PbVO3_wf

cd ../PbVO3_wf

export PATH=$PATH:/home/CMS/cms00/wannier90-2.0.0 You may add this line to your .bashrc.

init_w2w

In the last line, we started an interactive script of wien2wannier.
Use 200 k-points without a shift. Next, the program asks for band

http://www.wien2k.at/reg_user/textbooks/wien2wannier_userguide.pdf
http://www.wannier.org/doc/user_guide.pdf
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indices. wien2k numerates the bands according to their energies To find out the band indices, go back
to the web interface and download
the band structure in the agr format.
After opening it using xmgrace (If
it is not installed, use a copy from
/home/CMS/cms15_30/grace/grace/bin),
you can figure out the index of a certain
band simply by double-clicking it.

at every k-point. Hence, if we have band crossings (which is in-
deed the case for PbVO3), the band with the maximal D character
can have a different index at different k-points. In other words, we
need to perform a disentanglement.

In wien2wannier, we need to specify the range of indices such
that the index of the D-band at every k-point falls into this range.
So you should check very carefully by analyzing the band char-
acters (this can be done using the web interface), which indices to
feed to wien2wannier.

In the next step, we need to specify projections, i.e. tell the
program, which orbitals we are interested in. These are given in
the format “site:orbital”, where “site” is an integer (should
be 1 for V), while for the orbital you should use D (dxy, dyz,

dz2, dxz, or dx2y2). Since you specified more than one band in
the previous step, you will be asked also for other projections. But
the rest of the bands represent states that we are not interested in,
hence just press Ctrl+D. The program then knows that it needs to
do disentanglement.

After finishing the input, execute:
x lapw1

x w2w

x wannier90

The actual calculation of MLWF was done in the last line. To
check, whether the resulting Wannier function reproduces the DFT
band dispersion, run gnuplot and execute

set yrange[-1:1]; plot ’PbVO3_wf.spaghetti_ene’ using ($4/0.53):5, ’PbVO3_wf_band.dat’ with lines}

For perfectionists: To improve the fit, you can play with the disentan-
glement parameters that are specified in the PbVO3_wf.win file. Q4 Deviations between the Wannier

projections and the DFT bands structure
are clearly visible, in which parts
of the Brillouin zone they are most
pronounced? What is the radial spread
of the resulting Wannier function?
(check the PbVO3_wf.wout file)

5. We can now use the Wannier functions to compute the 〈~0n|H |~Rm〉
products that can be further used in a tight-binding model. In
fact, such products are already computed and stored in the file
PbVO3_wf_hr.dat (columns 6 and 7 for real and imaginary part,
respectively; for MLWF the imaginary contributions should be
always zero). Open the file and find two most relevant transfer
integrals that are symmetrically-inequivalent (all symmetrically
equivalent terms are considered as one). Q5 What are values (in meV)? Taking

into account only these two terms, how
would you call the resulting model?
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Tight-binding modeling

6. In the final part of the exercise we will perform a tight-binding
modeling. From MLWF, we already know the two relevant terms,
let’s call them t1 and t2. Now we need to evaluate the matrix el-
ements of the tight-binding Hamiltonian matrix, which by virtue
of the one-orbital nature of our model, reduces to a simple expres-
sion. Matrix elements have this general form:

∑
j

tije−i(~Rj−~Ri)·~k, (1)

where tij and ~Rj are taken from the file PbVO3_wf_hr.dat, ~Ri is
zero. Note that you should take into account all symmetrically-
equivalent t1 and t2 and the on-site term ε0, which is also listed in
PbVO3_wf_hr.dat. Construct the tight-binding Hamiltonian. Q6 For the tight-binding model with

two relevant couplings t1 and t2, write
down the final expression for the band
dispersion E(~k).

7. Calculate the eigenvalues of the tight-binding Hamiltonian for
selected k-points: Γ = (000), X = (π

a 00), M= = (π
a

π
a 0), and Z = (00 π

c )

and compare with the DFT band structure. (Alternatively, you can
calculate E(~k) for the entire~k-path, it is even more instructive!) Q7 Write down the energy differences

E(DFT)− E(TB) for these four points.
How would you explain the origin of
the deviations?

8. As a final step for today, we will calculate the non-interacting
Green’s function. For our 1×1 problem, it is given by:

G0(ω) =
1

N~k
∑

~k∈BZ

1

ω− E(~k)
, (2)

where N~k is the number of~k points in the sum and ω is a com-
plex frequency. By putting ω → ω + iδ (δ is a small positive real
number), evaluate the spectral function (DOS):

A0(ω) = − 1
π

Im G0(ω). (3) Q8 Integrate A0(ω) over all frequen-
cies and report the result. What is the
physical meaning of this result?You can of course evaluate G0 in the entire complex plane:

Figure 2: Real (left) and imaginary
(right) parts of the non-interacting
Green’s function G0(ω) evaluated on
the complex plane.

Important: after you’ve finished all calculations, open a terminal win-
dow and run “killall w2web” (don’t worry about the warnings).


