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3. CMS exercise:
Calculation of the Resistivity within Linear Response

The aim of this exercise is to compute the resistivity of a material within linear response. For this you
will write your own program that evaluates the necessary formulae from the lecture, and apply it to the
tight binding model of PbVO3 that you derived in the second exercise.

After completion, please send your source code and your discussion to jan.tomczak@tuwien.ac.at

Linear Response

In the lecture we derived the Kubo formula for the conductivity of a solid. If we only have one band:

σαβ = π2~e2
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where vα(k) is the Fermi velocity
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the Fermi-Dirac function at an inverse temperature β = 1/(kBT )1, and

A(k, ω) = − 1

π
=GR(k, ω + i0+) (4)

is the spectral function, V is the unit-cell volume and Nk the number of k-points.2 As we have seen
in the lecture, for the conductivity to be non-zero, excitations must have a finite lifetime. We therefore
supplement the dispersion εk with an imaginary part:

εk −→ εk + i~/τ (5)

where τ constitutes the lifetime of the excitation, that occurs as a damping factor in the Green’s function:

G(k, t) = eiεkt/~e−t/τ (6)

which corresponds in frequency space to a broadened Lorentzian peak:
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τ→∞−→ δ(ω − εk) (7)

As discussed in the lecture, in the limit of long lifetimes τ →∞ the conductivity can be simplified to

σαβ = π~e2(τ/~)
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Both equations give σ in units (Ωm)−1 (~ = 6.58212·10−16eVs, e = 1.602·10−19C, kB = 8.617·10−5eV/K,
[ω] =eV, [A(k, ω)] =eV−1, [v(k)] =m/s).

1We measure ω in units of eV!
2compared to the lecture we are using here the convention that A has the unit of an inverse energy. Therefore we have

a different power of ~ as prefactor in Eqs. 1, 8. The unit-cell volume and number of k-points, previously absorbed in the∑
-symbol, have been put as explicit factors for clarity.
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Electronic structure

In the last exercise you obtained that, within DFT, PbVO3 has a single band near the Fermi level that
is well described by the tight-binding relation

εk = ε0 + 2t1 (cos(kxa) + cos(kya)) + 4t2 cos(kxa) cos(kya) (9)

with the lattice constant a = 3.8Å, and ε0 = 0.03eV, t1 = −0.154eV and t2 = −0.05eV. Since the
band does not disperse in kz-direction (c = 4.67Å), the momentum-sum in the above equations can be
restricted to two dimensions (kx, ky) with ki ∈ [−π/a : π/a).

Tasks

1. Set up a program (you can choose any available language) that computes the local spectral function

Aloc(ω) =
1

Nk

∑
k

A(k, ω) (10)

using the above electronic structure and assuming a lifetime ~/τ ∼ 0.01 eV. Given this lifetime,
how dense should you at least choose your ω-frequency mesh? Compare the local spectral function
to the density of states (DOS) from exercise 2. The comparison can also help to judge how many
k-points are needed to produce a decent spectrum.

2. Given the above dispersion, and the relation Eq. 2 for the Fermi velocities, can you say (without
evaluating Eq. 1 on the computer) what is the value of the conductivity σxy in our case? According
to Ohm’s law, σxy is the proportionality between the current measured in x-direction, when applying
an external electrical field in y-direction.

3. Now code the Eqs. 1 and 8 and the necessary functions for the Fermi velocities and the derivative
of the Fermi function. A few things to consider:

• Note that −∂ωf(ω) is strongly peaked at low temperatures. The frequency mesh has to be
dense enough to resolve features smaller than ∼ kBT . You can test the accuracy of your
frequency integration by numerically checking that

∫
dω(−∂ωf(ω)) = 1.

• Note that the sum over the square of the spectral function will require more k-points than the
spectral function in order to be “smooth”.

• Also note that for constant τ , only the Fermi function is temperature dependent. As a con-
sequence, Φαβ(ω) =

∑
k∈BZ A

2(k, ω)vα(k)vβ(k) can be computed once and then used for the
frequency integral at various temperatures.

With this in mind

(a) Compare the conductivities σ of the two equations: plot them as a function of temperature
for constant ~/τ = 0.005, 0.01, 0.05, 0.1 eV. Identify the regime where there are notable
differences in the conductivities.

(b) Use a temperature dependent ~/τ = a+ bT 2, with a = 10−3eV and b = 10−6eV/K2. What is
the resulting temperature dependence of the resistivity ρ = 1/σ?
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