3. CMS exercise:
 Calculation of the Resistivity within Linear Response

The aim of this exercise is to compute the resistivity of a material within linear response. For this you will write your own program that evaluates the necessary formulae from the lecture, and apply it to the tight binding model of PbVO_{3} that you derived in the second exercise.

After completion, please send your source code and your discussion to jan.tomczak@tuwien.ac.at

Linear Response

In the lecture we derived the Kubo formula for the conductivity of a solid. If we only have one band:

$$
\begin{equation*}
\sigma^{\alpha \beta}=\pi^{2} \hbar e^{2} \int d \omega\left(-\frac{\partial f}{\partial w}\right) \frac{1}{V N_{\mathbf{k}}} \sum_{\mathbf{k} \in B Z} A^{2}(\mathbf{k}, \omega) v^{\alpha}(\mathbf{k}) v^{\beta}(\mathbf{k}) \tag{1}
\end{equation*}
$$

where $v^{\alpha}(\mathbf{k})$ is the Fermi velocity

$$
\begin{equation*}
v^{\alpha}(\mathbf{k})=\frac{1}{\hbar} \frac{\partial \epsilon_{\mathbf{k}}}{\partial k_{\alpha}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\omega)=\frac{1}{e^{\beta \omega}+1} \tag{3}
\end{equation*}
$$

the Fermi-Dirac function at an inverse temperature $\beta=1 /\left(k_{B} T\right)^{1}$, and

$$
\begin{equation*}
A(\mathbf{k}, \omega)=-\frac{1}{\pi} \Im G^{R}\left(\mathbf{k}, \omega+i 0^{+}\right) \tag{4}
\end{equation*}
$$

is the spectral function, V is the unit-cell volume and $N_{\mathbf{k}}$ the number of k-points. ${ }^{2}$ As we have seen in the lecture, for the conductivity to be non-zero, excitations must have a finite lifetime. We therefore supplement the dispersion $\epsilon_{\mathbf{k}}$ with an imaginary part:

$$
\begin{equation*}
\epsilon_{\mathbf{k}} \longrightarrow \epsilon_{\mathbf{k}}+i \hbar / \tau \tag{5}
\end{equation*}
$$

where τ constitutes the lifetime of the excitation, that occurs as a damping factor in the Green's function:

$$
\begin{equation*}
G(\mathbf{k}, t)=e^{i \epsilon_{\mathbf{k}} t / \hbar} e^{-t / \tau} \tag{6}
\end{equation*}
$$

which corresponds in frequency space to a broadened Lorentzian peak:

$$
\begin{equation*}
A(\mathbf{k}, \omega)=-\frac{1}{\pi} \Im G(\mathbf{k}, \omega)=-\frac{1}{\pi} \Im \frac{1}{\omega-\epsilon_{\mathbf{k}}+i \hbar / \tau}=\frac{1}{\pi} \frac{\hbar / \tau}{\left(\omega-\epsilon_{\mathbf{k}}\right)^{2}+(\hbar / \tau)^{2}} \quad \xrightarrow{\tau \rightarrow \infty} \delta\left(\omega-\epsilon_{\mathbf{k}}\right) \tag{7}
\end{equation*}
$$

As discussed in the lecture, in the limit of long lifetimes $\tau \rightarrow \infty$ the conductivity can be simplified to

$$
\begin{equation*}
\sigma^{\alpha \beta}=\pi \hbar e^{2}(\tau / \hbar) \frac{1}{2 V N_{\mathbf{k}}} \sum_{\mathbf{k}}\left(-\frac{\partial f}{\partial w}\right)_{\omega=\epsilon_{\mathbf{k}}} v^{\alpha}(\mathbf{k}) v^{\beta}(\mathbf{k}) \tag{8}
\end{equation*}
$$

Both equations give σ in units $(\Omega m)^{-1}\left(\hbar=6.58212 \cdot 10^{-16} \mathrm{eVs}, e=1.602 \cdot 10^{-19} \mathrm{C}, k_{B}=8.617 \cdot 10^{-5} \mathrm{eV} / \mathrm{K}\right.$, $\left.[\omega]=\mathrm{eV},[A(\mathbf{k}, \omega)]=\mathrm{eV}^{-1},[v(\mathbf{k})]=\mathrm{m} / \mathrm{s}\right)$.

[^0]
Electronic structure

In the last exercise you obtained that, within $\mathrm{DFT}, \mathrm{PbVO}_{3}$ has a single band near the Fermi level that is well described by the tight-binding relation

$$
\begin{equation*}
\epsilon_{\mathbf{k}}=\epsilon_{0}+2 t_{1}\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right)+4 t_{2} \cos \left(k_{x} a\right) \cos \left(k_{y} a\right) \tag{9}
\end{equation*}
$$

with the lattice constant $a=3.8 \AA$, and $\epsilon_{0}=0.03 \mathrm{eV}, t_{1}=-0.154 \mathrm{eV}$ and $t_{2}=-0.05 \mathrm{eV}$. Since the band does not disperse in k_{z}-direction $(c=4.67 \AA)$, the momentum-sum in the above equations can be restricted to two dimensions $\left(k_{x}, k_{y}\right)$ with $k_{i} \in[-\pi / a: \pi / a)$.

Tasks

1. Set up a program (you can choose any available language) that computes the local spectral function

$$
\begin{equation*}
A^{l o c}(\omega)=\frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} A(\mathbf{k}, \omega) \tag{10}
\end{equation*}
$$

using the above electronic structure and assuming a lifetime $\hbar / \tau \sim 0.01 \mathrm{eV}$. Given this lifetime, how dense should you at least choose your ω-frequency mesh? Compare the local spectral function to the density of states (DOS) from exercise 2. The comparison can also help to judge how many k-points are needed to produce a decent spectrum.
2. Given the above dispersion, and the relation Eq. 2 for the Fermi velocities, can you say (without evaluating Eq. 1 on the computer) what is the value of the conductivity $\sigma^{x y}$ in our case? According to Ohm's law, $\sigma^{x y}$ is the proportionality between the current measured in x-direction, when applying an external electrical field in y-direction.
3. Now code the Eqs. 1 and 8 and the necessary functions for the Fermi velocities and the derivative of the Fermi function. A few things to consider:

- Note that $-\partial_{\omega} f(\omega)$ is strongly peaked at low temperatures. The frequency mesh has to be dense enough to resolve features smaller than $\sim k_{B} T$. You can test the accuracy of your frequency integration by numerically checking that $\int d \omega\left(-\partial_{\omega} f(\omega)\right)=1$.
- Note that the sum over the square of the spectral function will require more \mathbf{k}-points than the spectral function in order to be "smooth".
- Also note that for constant τ, only the Fermi function is temperature dependent. As a consequence, $\Phi^{\alpha \beta}(\omega)=\sum_{\mathbf{k} \in B Z} A^{2}(\mathbf{k}, \omega) v^{\alpha}(\mathbf{k}) v^{\beta}(\mathbf{k})$ can be computed once and then used for the frequency integral at various temperatures.

With this in mind
(a) Compare the conductivities σ of the two equations: plot them as a function of temperature for constant $\hbar / \tau=0.005,0.01,0.05,0.1 \mathrm{eV}$. Identify the regime where there are notable differences in the conductivities.
(b) Use a temperature dependent $\hbar / \tau=a+b T^{2}$, with $a=10^{-3} \mathrm{eV}$ and $b=10^{-6} \mathrm{eV} / \mathrm{K}^{2}$. What is the resulting temperature dependence of the resistivity $\rho=1 / \sigma$?

[^0]: ${ }^{1}$ We measure ω in units of eV!
 ${ }^{2}$ compared to the lecture we are using here the convention that A has the unit of an inverse energy. Therefore we have a different power of \hbar as prefactor in Eqs. 1, 8. The unit-cell volume and number of k-points, previously absorbed in the \sum-symbol, have been put as explicit factors for clarity.

