## Wannier90 \& Wien2Wannier (without SO interaction)

## STEP.I :

I. Run LDA calculation for NiO with Wien 2 K and get band-structure date (from "task").

Use lattice constant : 7.899055 Bohr \& Ni $(0.0,0.0,0.0), \mathrm{O}(0.5,0.5,0.5)$
or use "NiO.cif" on the top of cms $16 \_30$ server.
( you can upload "case.cif" file on the first page of StructGen or put the file on "case" directly.)
2. Prepare "case.fermi" file with Fermi energy $E_{F}$ on the first line.
(Use "grep :ENE case.scf" command to find $\mathrm{E}_{\mathrm{F}}$ in Ry unit)
3. Prepare K-mesh in the whole BZ which is used in wannierization (Use "x kgen -fbz" command with no-shift ("0") )

STEP. 2 : Write "case.inwf" file
Decide the number of bands to be wannierized (d-only or dp ?) and find the index of these bands defined in Wien2K.
 Find band index using ... "case.outputl" file
or
"x findbands -emin ** -emax ** -efermi **" command (note : emin and emax in eV , efermi in Ry unit ) which writes the band index in the energy window to "case.outputfind" file

| Example of "case.outputfind" |  |
| :--- | :--- |
| Bloch bands | in |
| the | interval |
| at all k: | 5 |
|  | 12 |



## STEP. 3 : Run interface

I. Command "write_win" to make"case.win" on the basis on "case.inwf" ("case.win" file is input file for wannier90)
2. Command "x wannier90-pp"
(write a list of nn k-points to "case.nnkp" on the basis on "case.win")
3. Run "x lapwI"
(compute eigen states and vectors for the new k-mesh prepared in STEP.I)
4. Command "x w2w" $\rightarrow$ Output :"case.mmn" and "case.amn"
(compute overlaps $M_{m n}$ and initial projections $A_{m n}$ )


```
!!! Post-processing options !!!
    write_proj = .true.
    write_xyz = .true.
    translate_home_cell = .true.
    hr_plot = .true.
!fermi_surface_plot = .true.
!!! Band structure !!!
!!! needs `kpoint_path' block
!bands_plot = .true.
    bands_num_points = 50
!bands_plōt_format = gnuplot xmgrace
!bands_plot_project = 1-3
!bands_plot_mode \(=s-k \mid\) cut [Slater-Koster | truncate Hamiltonian]
!dist_cutoff \(=1.0\)
```

bands_plot = .true.
begin kpoint_path

| R | 0.50 | 0.50 | 0.50 | L | 0.28 | 0.28 | 0.28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 0.28 | 0.28 | 0.28 | G | 0.00 | 0.00 | 0.00 |
| G | 0.00 | 0.00 | 0.00 | D | 0.00 | 0.12 | 0.12 |
| D | 0.00 | 0.12 | 0.12 | X | 0.00 | 0.25 | 0.25 |
| X | 0.00 | 0.25 | 0.25 | Z | 0.12 | 0.25 | 0.38 |
| Z | 0.12 | 0.25 | 0.38 | M | 0.25 | 0.25 | 0.50 |
| M | 0.25 | 0.25 | 0.50 | S | 0.12 | 0.12 | 0.25 |
| S | 0.12 | 0.12 | 0.25 | G | 0.00 | 0.00 | 0.00 |
| end kpoint_path |  |  |  |  |  |  |  |

## SETP. 4 : Run Wannierization

I. Command "x wannier90" to make "case.win" on the basis on "case.inwf" ("case.win" file is input file for wannier90)
2. Check the result of wannierization written to "case.wout" file (especially, convergence of the spread, which is (usually) smaller than the unit cell)

## Wannierization Fin !!

## SETP. 5 : Analysis and Visualization

## I. Compare band-structures

Wannier 90 writes a band structure derived from the Wannier-interpolated $H(k)$ to "case_band.dat". One can compare it to the band structure computed in STEP.I ("case.spaghetti" file).

GNUPLOT COMAND : p 'case.spaghetti_ene' u (\$4/0.53):5, 'case_band.dat' w I
for conversion from Bohr-1 to $\AA^{-1}$ unit
| Bohr = 0.529|772083Å



## Question.I

Find the diameters of $n n, n n n, \ldots$ shells of Ni from "case.outputnn".
Then, use wannier90 to calculate band-structures with no hopping, nn, nnn ... hopping and compare them with the original band structure. (use the "dist_cutoff" parameter and "restart" option to save time.)

## 2. Plot Wannier Functions

I. write "case.inwplot" as follows (see HINTS for details of this input file),

3D ORTHO
-1 -1 -1
$\begin{array}{llll}1 & -1 & -1 & 1\end{array}$
$\begin{array}{llll}-1 & 1 & -1 & 1\end{array}$
$\begin{array}{llll}-1 & -1 & 1 & 1\end{array}$
$404040000 \quad$ \# grid points and echo increments
NO
WAN ANG LARGE
12 «m"-th WF you want to plot
2. Command " $x$ wplot -wf -m" (it may take a few minutes depending on your grid points) (evaluate m-th WF on the real-space grid and write density to "case_m.psink")
3. Run "wplot2xsf"
(converts files to " $x s$ " files which can be opened by XCrySDen.)
4. Command "xcrysden --xsf case_m.xsf"
: Pick "Tools $\rightarrow$ Date Grid" from the menu and press OK (set "isovalue" to 2 and check the "Render +/- isovalue" box )


## Question. 2

Plot " $x y$ " and " $3 z^{2}-r^{2}$ " wannier functions for $d$-only and dp models

## Question. 3

Find out $\mathrm{H}(\mathrm{R}=(0,0, \mathrm{I}))$ part in "case_hr.dat" file and which n -shell it corresponds to. (use "XCRySDen" and "Modify $\rightarrow$ \# of unit cells drawn" to find out. )
Then, analyze the symmetry of $H(R=(0,0, I))$ and $H(R=(0,0,0))$.
(ex. find out the reason for ZERO values from the viewpoint of symmetry)

## Structure of "case_hr.dat" file

This file contains the hopping integrals $<m, R|H| n, 0>$ between the $n$-th wannier function $\mid n, 0>$ in the home unit cell and the $m$-th wannier function $\mid m, R>$ in the unit cell at $R$.

| -6 | 0 | 3 | 1 | 1 | 0.000040 | 0.000000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -6 | 0 | 3 | 2 | 1 | 0.000000 | -0.000000 |
| -6 | 0 | 3 | 3 | 1 | -0.000000 | 0.000000 |
| -6 | 0 | 3 | 4 | 1 | 0.000047 | -0.000000 |
| -6 | 0 | 3 | 5 | 1 | -0.000047 | -0.000000 |
| -6 | 0 | 3 | 1 | 2 | 0.000000 | -0.000000 |
| -6 | 0 | 3 | 2 | 2 | 0.000041 | -0.000000 |
| ( $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ ) |  |  | (m, n) |  | Real( $\mathrm{T}_{\mathrm{mn}}$ ) | $\operatorname{lm}\left(\mathrm{T}_{\mathrm{mn}}\right)$ |

where R is given as $\vec{R}=R_{1} \overrightarrow{a_{1}}+R_{2} \overrightarrow{a_{2}}+R_{3} \overrightarrow{a_{3}}$

## Question. 4

What is the largest $n n$ and $n n n$ hopping matrix element $T_{\alpha \beta}$ (values and orbitals)?

## HINTS

### 2.9.12 character (len=20) : : bands_plot_mode

To interpolate the band structure along the k-point path, either use the Slater-Koster interpolation scheme or truncate the Hamiltonian matrix in the WF basis. Truncation criteria are provided by hr_cutoff and dist_cutoff.
The valid options for this parameter are:

$$
\begin{aligned}
& -\mathrm{s}-\mathrm{k} \text { (default) } \\
& - \text { cut }
\end{aligned}
$$

### 2.9.42 real (kind=dp) :: hr_cutoff

The absolute value of the smallest matrix element of the Hamiltonian in the WF basis. If $h_{m n}(\mathbf{R})>$ hr _cutoff, then the matrix element $h_{m n}(\mathbf{R})$ is retained and used in the band structure interpolation (when bands_plot_mode $=$ cut) or in the transport calculation. Otherwise it is deemed to be insignificant and is discarded. Units are eV.

The default value is 0.0 .

```
2.9.43 real(kind=dp) :: dist_cutoff
```

The largest distance between two WFs for which the Hamiltonian matrix element is retained and used in the band interpolation (when bands_plot_mode $=$ cut) or in the transport calculation. Units are $\AA$.

The default value is 1000.0 .

### 2.9.11 integer :: bands_plot_project(:)

If present wannier90 will compute the contribution of this set of WF to the states at each point of the interpolated band structure. The WF are numbered according to the seedname.wout file. The result is written in the seedname_band.dat file, and a corresponding gnuplot script to seedname_band_proj.dat

For example, to project on to WFs 2, 6, 7, 8 and 12 :
bands_plot_project : 2, 6-8, 12

### 2.6.7 character (len=20) : : restart

If restart is present the code will attempt to restart the calculation from the seedname.chk file. The value of the parameter determines the position of the restart

The valid options for this parameter are:

- default. Restart from the point at which the check file seedname. chk was written
- wannierise. Restart from the beginning of the wannierise routine
- plot. Go directly to the plotting phase
- transport. Go directly to the transport routines

| 3D ORTHO | mode O(RTHOGONAL) $\mid$ N(ON-ORTHOGONAL) |
| :---: | :---: |
| -1 -1 -1 1 | \#x, y, z, divisor of orig |
| $0-1-11$ | \#x, y, z, divisor of $x$-end |
| -1 $00-11$ | \#x, y, z, divisor of y -end |
| -1 -1001 | \#x, y, z, divisor of $z$-end |
| 20202000 | 0 \# grid points and echo increments |
| NO | DEP (HASING) \|NO (POST-PROCESSING) |
| WAN ANG LARGE | \# switch ANG\|ATU।AU LARGE|SMALL |
| 11 | k -point, band index |

Interpretive comments on this file are as follows:
line 1: $A 3, A 1$
mode flag
MODE 3D a three-dimensional grid will be specified
$n \mathrm{D} \quad$ with $n=0,1,2$ exist in lapw 7 , but are untested with wplot
ANY read arbitrary grid from case.grid (untested)
O
N grid axes will be checked for mutual orthogonality axes may be non-orthogonal
line 2: free format
$i x, i y, i z, i d v \quad$ Coordinates of the origin of the grid, where $x=i x / i d v$ etc. in units of the conventional lattice vectors
line 3: free format
ix,iy,iz,idv Coordinates of the end points of each grid axis
$\ggg$ line 3 must be given for each direction (i.e., $n$ times in total for an $n \mathrm{D}$ grid).
line 6: free format $n x, n y, n z ; N \operatorname{N}$
$n x, n y, n z \quad$ number of mesh points in each direction; the additional input on this line is unused

## Reference

I. "Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions", Jan Kuneš, Ryotaro Arita, Philipp Wissgott, Alessandro Toschi, Hiroaki Ikeda, Karsten Held https://arxiv.org/abs/I004.3934

## 2. "WIEN2WANNIER USER'S GUIDE" Jan Kuneš, Philipp Wissgott and Elias Assmann http://www.wien2k.at/reg_user/textbooks/wien2wannier_userguide.pdf

3. " wannier90: User Guide (version 2.0.I)" http://wannier.org/doc/user_guide.pdf

## Question. I

Find the diameters of nn, nnn, ... shells of Ni from "case.outputnn".
Then, use wannier90 to calculate band structures with no hopping, nn, nnn ... hopping and compare them with the original band structure.
(use the "dist_cutoff" parameter and "restart" option to save time.)

## Question. 2

Plot " $x y$ " and " $3 z^{2}-r^{2}$ " wannier functions for $d$-only and dp models

## Question. 3

Find out $\mathrm{H}(\mathrm{R}=(0,0, \mathrm{I}))$ part in "case_hr.dat" file and which n -shell it corresponds to. (use "XCRySDen" and "Modify $\rightarrow$ \# of unit cells drawn" to find out. )
Then, analyze the symmetry of $H(R=(0,0, I))$ and $H(R=(0,0,0))$.
(ex. find out the reason for ZERO values from the viewpoint of symmetry)

## Question. 4

What is the largest $n n$ and $n n n$ hopping matrix element $T_{\alpha \beta}$ (values and orbitals)?

