

STEP.1 :

1. Run LDA calculation for NiO with Wien2K and get band-structure date (from "task"). Use lattice constant : 7.899055 Bohr & Ni (0.0,0.0,0.0) , O(0.5,0.5,0.5)

or use "**NiO.cif**" on the top of cms16_30 server.

(you can upload "case.cif" file on the first page of StructGen or put the file on "case" directly.)

2. Make "case.fermi" file with Fermi energy E_F on the first line.

(Use "grep :FER case.scf" command to find E_F in Ry unit)

3. Make subdir and K-mesh in the whole BZ for wannierization

(Use "prepare_w2wdir subdir" and "x kgen -fbz" command with no-shift ("0"))

STEP.2 : Write "case.inwf" file

Find the number of target bands (to be wannierized, d-only or d-p?) and the indices of these bands defined in Wien2K calculation.

Find band index using ... "case.output1" file or "x findbands -emin ** -emax ** -efermi **" command (note : emin and emax in eV, efermi in Ry unit) which writes the band index in the energy window to "case.outputfind" file

Example of "case.	outp	outfind"	
Bloch bands	in	the in	terval
at all k:	5	12	8
at any k:	5	13	9

STEP.3 : Run interface

- Command "write_win" to make "case.win" using "case.inwf" file ("case.win" file is input file for wannier90)
- Command "x wannier90 -pp" (write a list of nn k-points to "case.nnkp" on the basis on "case.win")
- 3. Run "**x lapw1**"

(compute eigen states and vectors for the new k-mesh prepared in STEP.1)

4. Command "**x** w2w" \rightarrow Output : "case.mmn" and "case.amn"

(compute overlaps M_{mn} and initial projections A_{mn})

Example of "	'case.win" file	
num_bands num_wann	= 8 = 8	Option for disentanglement (num_bands > num_wann case)
<pre>!!! Disentangleme !dis_froz_min !dis_froz_max !dis_mix_ratio</pre>	nt parameters !!! = 7. = 9. = 0.5	dis_froz_min : bottom of the frozen energy window dis_froz_max : top of the frozen energy window dis_mix_ratio : mixing ratio during minimization of Ω _I
<pre>!!! Iterations &c iprint</pre>	. !!! = 1	Maximum number of iterations for minimization
<pre>num_iter num_print_cycles conv window</pre>	= 10000 = 100 = 3	"Restart" option Wannierise : Restart from the beginning of the wannierization
<pre>!conv_tol dis_num_iter !dis_conv_window</pre>	= 1e-10 = 10000 = 3	Plot : Go directly to plotting phase (Use this "restart" option in Q.1 to save time)
!dis_conv_tol !restart	= 1e-10 = default	wannierise plot transport

```
!!! Post-processing options !!!
write proj
                       = .true.
write_xyz
                       = .true.
translate_home_cell
                       = true.
hr_plot
                       = true.
                                            "dist_cutoff" option :
!fermi surface plot
                       = .true.
                                            put "bands_plot_mode = cut" and
!!! Band structure !!!
                                            enter the largest distance between WFs for which
!!! needs `kpoint_path' block
!bands_plot
                       = .true.
                                            the Hamiltonian matrix element is retained.
bands_num_points
                       = 50
                                            (use Å unit)
!bands plot format
                       = gnuplot xmgrace
!bands_plot_project
                       = 1 - 3
!bands plot mode
                       = s-k | cut [Slater-Koster | truncate Hamiltonian]
!dist cutoff
                       = 1.0
bands_plot = .true.
begin kpoint path
                       L 0.28
  R 0.50 0.50 0.50
                                 0.28
                                      0.28
                       G 0.00
     0.28
          0.28 0.28
                                 0.00
                                       0.00
  0.00
          0.00 0.00
                       D 0.00
                                 0.12
                                       0.12
  G
          0.12 0.12
                       X 0.00
                                 0.25
                                      0.25
    0.00
  D
          0.25
               0.25
                        Ζ
                          0.12
                                 0.25
                                      0.38
  X 0.00
  Z 0.12
          0.25 0.38
                       M 0.25
                                 0.25
                                      0.50
    0.25
          0.25 0.50
                       S 0.12
                                 0.12
                                      0.25
  М
  S
    0.12 0.12 0.25
                       G 0.00
                                 0.00
                                      0.00
end kpoint_path
```

SETP.4 : Run Wannierization

- Command "x wannier90" to make "case.win" on the basis on "case.inwf" ("case.win" file is input file for wannier90)
- Check the result of wannierization written to "case.wout" file (especially, convergence of the spread, which is (usually) smaller than the unit cell)

SETP.5 : Analysis and Visualization

1. <u>Compare band-structures</u>

Wannier90 writes a band structure derived from the Wannier-interpolated H(k) to "case_band.dat". One can compare it to the one computed in STEP.1 (Wien2K) ("case.spaghetti" file).

GNUPLOT COMAND : p 'case.spaghetti_ene' u (\$4/0.53):5, 'case_band.dat' w l

for conversion from Bohr-1 to Å-1 unit

 $1 \text{ Bohr} = 0.5291772083\text{\AA}$ 👌 🛯 🖉 🍳 🍳 🔍 🔍 ? 'nio_donly.spaghetti_ene' u (\$4/0.53):5 'nio dp.spaghetti ene' u (\$4/0.53):5 'nio_donly_band.dat' d-only model 'nio dp band.dat' dp model -4 -6 05 15 2 з 0 0.5 1 1.5 2 2.5 3 3.5

Question.1

Find the diameters of nn, nnn, ... shells of Ni from "case.outputnn". Then, use wannier90 to calculate band-structures with no hopping, nn, nnn ... hopping and compare them with the original band structure. (use the "dist_cutoff" parameter and "restart" option to save time.)

2. <u>Plot Wannier Functions</u>

1. write "case.inwplot" as follows (see HINTS for details of this input file),

```
3D ORTHO

-1 -1 -1 1

1 -1 -1 1

-1 1 -1 1

40 40 40 0 0 0  # grid points and echo increments

NO

WAN_ANG LARGE

1 2 ← "m"-th WF you want to plot
```


- Command "x wplot -wf -m" (it may take a few minutes depending on your grid points) (evaluate m-th WF on the real-space grid and write density to "case_m.psink")
- 3. Run "**wplot2xsf**"

(converts files to "xsf" files which can be opened by XCrySDen.)

- 4. Command "xcrysden --xsf case_m.xsf"
 - : Pick "Tools \rightarrow Date Grid" from the menu and press OK

(set "isovalue" to 2 and check the "Render +/- isovalue" box)

Question.2

Plot "xy" and " $3z^2-r^2$ " wannier functions for d-only and dp models

Find out H(R=(0,0,1)) part in "case_hr.dat" file and which n-shell it corresponds to.

(use "XCRySDen" and "Modify \rightarrow # of unit cells drawn" to find out.) Then, analyze the symmetry of H(R=(0,0,1)) and H(R=(0,0,0)).

(ex. find out the reason for ZERO values from the viewpoint of symmetry)

Structure of "case_hr.dat" file

This file contains the hopping integrals <m,R |H|n,O> between the n-th wannier function |n,O> in the home unit cell and the m-th wannier function |m, R> in the unit cell at R.

What is the largest nn and nnn hopping element $T_{\alpha\beta}$ (values and orbitals)?

HINTS

2.9.12 character(len=20) :: bands_plot_mode

To interpolate the band structure along the k-point path, either use the Slater-Koster interpolation scheme or truncate the Hamiltonian matrix in the WF basis. Truncation criteria are provided by hr_cutoff and dist_cutoff.

The valid options for this parameter are:

- s-k (default)

- cut

2.9.42 real(kind=dp) :: hr_cutoff

The absolute value of the smallest matrix element of the Hamiltonian in the WF basis. If $h_{mn}(\mathbf{R}) > hr_cutoff$, then the matrix element $h_{mn}(\mathbf{R})$ is retained and used in the band structure interpolation (when bands_plot_mode = cut) or in the transport calculation. Otherwise it is deemed to be insignificant and is discarded. Units are eV.

The default value is 0.0.

2.9.43 real(kind=dp) :: dist_cutoff

The largest distance between two WFs for which the Hamiltonian matrix element is retained and used in the band interpolation (when $bands_plot_mode = cut$) or in the transport calculation. Units are Å.

The default value is 1000.0.

2.9.11 integer :: bands_plot_project(:)

If present wannier90 will compute the contribution of this set of WF to the states at each point of the interpolated band structure. The WF are numbered according to the seedname.wout file. The result is written in the seedname_band.dat file, and a corresponding gnuplot script to seedname_band_proj.dat

For example, to project on to WFs 2, 6, 7, 8 and 12:

```
bands_plot_project : 2, 6-8, 12
```

2.6.7 character(len=20) :: restart

If restart is present the code will attempt to restart the calculation from the seedname.chk file. The value of the parameter determines the position of the restart

The valid options for this parameter are:

- default. Restart from the point at which the check file seedname.chk was written
- wannierise. Restart from the beginning of the wannierise routine
- plot. Go directly to the plotting phase
- transport. Go directly to the transport routines

case.inwplot

	top of file: case.inwplot	
3D ORTHO	<pre># mode O(RTHOGONAL) N(ON-ORTHOGONAL)</pre>	
-1 -1 -1 1	#x, y, z, divisor of orig	
0 -1 -1 1	#x, y, z, divisor of x-end	
-1 0 -1 1	#x, y, z, divisor of y-end	
-1 -1 0 1	#x, y, z, divisor of z-end	
20 20 20 0 0	0 # grid points and echo increments	
NO	<pre># DEP(HASING) NO (POST-PROCESSING)</pre>	
WAN ANG LARGE	<pre># switch ANG ATU AU LARGE SMALL</pre>	
1 1	<pre># k-point, band index</pre>	
bottom of file		

Interpretive comments on this file are as follows:

line 1: A3, A1 mode flag

MODE	3D	a three-dimensional grid will be specified
	nD	with $n = 0, 1, 2$ exist in lapw7, but are untested with wplot
	ANY	read arbitrary grid from <i>case</i> .grid (untested)
flag	0	grid axes will be checked for mutual orthogonality
U	Ν	axes may be non-orthogonal

line 2: free format

ix,iy,iz,idv Coordinates of the origin of the grid, where x=ix/idv etc. in units of the *conventional* lattice vectors

line 3: free format

ix,iy,iz,idv Coordinates of the end points of each grid axis

>>> **line 3** must be given for each direction (i.e., *n* times in total for an *n*D grid). **line 6:** free format nx, ny, nz; N N N

nx,ny,nz number of mesh points in each direction; the additional input on this line is unused