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1. Getting familiar with the Density of States 1∗+2+2=1∗+4 points

Calculations of thermodynamic quantities, response functions and Feynman diagrams in QFT
for condensed matter systems often require the evaluation of integrals or sums over all momenta
k (typically over the first Brillouin Zone). An important simplification of these k-summations
is possible, however, when the integrand F is depending on the energy only. In this case the
integration/sum is best performed by using the energy ε as a variable. In the case of a cubic
lattice of volume Ld in d dimensions we have for a given observable F :

F =
1
Ld

∑
k

F(εk) =
1

(2π)d

(2π)d

Ld

∑
k

F(εk) ' 1
(2π)d

∫
ddk F(εk) =

∫
dεN (ε)F(ε) (1)

where N (ε), i.e. the so-called Density of States (DOS), which can be defined via comparison
between the different equalities as

N (ε) =
1
Ld

∑
k

δ(ε− εk) or, for the continuous case, (2)

=
1

(2π)d

∫
ddk δ(ε− εk). (3)

a) Calculate and plot the explicit expression for N (ε) for non-interacting particles of mass m
in the continuous case (i.e., εk = ~2k2

2m ) in one, two and three dimensions. How do the
corresponding Fermi surfaces look like in these cases?

b) Consider the following one-dimensional tight-binding Hamiltonian

H = −t
∑
〈i,j〉

[
c†i,σcj,σ + h.c.

]
(4)

with hopping (t > 0) restricted to next-neighboring sites, where c†i,σ and ci,σ are the
creation/annihilation operators for one electron with spin σ =↑, ↓ at the position xi =
i a with i = 0, 1, ..., N and a being the lattice spacing. Assuming periodic boundary con-
ditions (x0 = xN ), compute the corresponding eigenenergies, e.g., using the following basis
transformation (from real to momentum space)

c†k,σ =
1√
Na

∑
xi

e−ikxic†i,σ (5)

for the fermionic operators.
c) How can one extend the results of 1b) for arbitrary dimensions d > 1? Analyze explicitely

the results obtained for d = 2, and try to plot (numerically) the DOSes N (ε) for the cases
d = 1, 2, 3. Which are the most prominent features of theses DOS functions and at which
energies ε they occur? How would the corresponding Fermi surfaces look like for the case
d = 1, 2, e.g. if one has an average density of one electron per site (half-filled system)?
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2. Screened and unscreened Coulomb Potentials 0.5∗+1.5∗=2∗ points

a) From the integral representation of the delta function,

δ(r) =
∫

d3k

(2π)3
eik·r (6)

and the fact that the Coulomb potential φ(r) = −e/r satisfies Poisson’s equation,

−∇2φ(r) = −4πeδ(r), (7)

show that the electronic pair potential, V (r) = −eφ(r) = e2/r, can be written in the form

V (r) =
∫

d3k

(2π)3
eik·r V (k), (8)

where the Fourier transform V (k) is given by

V (k) =
4πe2

k2
(9)

b) Show that the Fourier transf. of the screened Coulomb interaction Vs(r) = (e2/r)e−kTF r is

Vs(k) =
4πe2

k2 + k2
TF

(10)

by substituting (10) into the Fourier integral

Vs(r) =
∫

d3k

(2π)3
eik·r Vs(k), (11)

and evaluating that integral in spherical coordinates (Hint: The radial integral is best done
as a contour integral.). Finally, deduce from (10) that Vs(r) satisfies(

−∇2 + k2
TF

)
Vs(r) = 4πe2δ(r) (12)

3. Calculations of the Lindhard function (I) 3 points

Using the formula of first-order stationary perturbation theory,

|ψk〉 = |ψ0
k〉+

∑
k′

|ψ0
k′〉〈ψ0

k′ |V |ψ0
k〉

εk − εk′
(13)

and expressing the electronic charge density as

ρ(r) = −e
∑
k

fk|ψk(r)|2 = ρ0(r) + ρind(r) (14)

(where fk is the equilibrium Fermi distribution), show that the Fourier transform of the charge
induced to first order in a total potential φ is given by

ρind(q) = −e2
∫
d3k

4π3

fk− 1
2
q − fk+ 1

2
q

~2(k · q/m)
φ(q). (15)

In which limit does the Lindhard screening approach the Thomas-Fermi one?

∗ Bonus points Viel Spaß!
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