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Intro: The Fermi-Liquid (FL) theory by Lev Landau, postulating the existence of independent
quasi-particles with the same charge and spin of the original electrons but with energy εp 6= p2

2m ,
allows to solve the “puzzle” of the metallic physics, that is to understand why the qualitative
behavior of several observables in metals resembles so closely that of a non-interacting (!) elec-
tron gas. Starting point is the consideration that the energy change δE due to adding/removal
of quasiparticles (δnp,σ) with momentum p and spin σ to/from the Fermi sphere is given by the
following functional:

δE[δnp,σ] =
∑
p,σ

ε̃p δnp,σ +
1
2

∑
p,p′; σ,σ′

fσ,σ′ (p,p′) δnp,σ δnp′,σ′ + · · · (1)

The coefficients of the first term of the sum (ε̃p) , which represent the energies for creating an
excitation with momentum p without considering the feedback effects of the other quasiparticles
(second term of Eq. (1)), are usually expanded (in the isotropic case) as ε̃p ∼ ε̃F +ṽF (p−pF )+· · · ,
whereas ṽF = |∂ε̃p

∂p |p=pF
| ' pF

m∗ , being m∗ the (enhanced) effective mass1. Finally, it is important
to note that the quasi-particle distribution function np has the same form as for non-interacting
electrons, but in terms of the quasiparticle energy εp.

6. First steps in calculations of a Fermi Liquid 1+1=2 points

a) Verify that the so-called quasiparticle density of states defined as Ñ(ε) = 1
Ld

∑
p δ(ε− ε̃p) can

be easily expressed for ε = ε̃F as m∗

m N(εF ), where N(εF ) is the DOS of the corresponding
non-interacting system.

b) Derive from Eq. 1 the formal expression of the (full) quasi-particle energy, defined as the
energy necessary to add an excitation of momentum p close to the Fermi level, that is
εp = δE

δnp,σ
. Which is the physical meaning of the term correcting the value of ε̃p ? Are the

values of εp depending on temperature or chemical potential? Motivate your answer.

7. Compressibility of Fermi-gases and Fermi Liquids 1∗+2 points

a) The isothermal compressibility -which is also related to the sound velocity in a given medium-
is defined commonly in terms of pressure and volume as κT = − 1

V
∂V
∂P

∣∣
T
. By using standard

thermodynamic relations, express the pressure P in terms of the chemical potential µ, and
demonstrate that κT can be also written as

κT =
1
n2

∂n

∂µ

∣∣∣∣
T

, (2)

with n being the total electron density. (Hint: The easiest way -but not the only one- is
probably to rewrite the derivative of ∂P

∂V as a combination of derivatives in µ and n ...)

1As explained in the Lecture the mass enhancement can be related microscopically to the momentum and
frequency derivatives of the electronic self-energy at the Fermi level.
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b) Starting from Eq. (2), compute the value of the compressibility of a Fermi Liquid, neglecting
all feedback effects in the calculations (Hint: express the variation of the total density n of
the system as a sum over all quasiparticle states...). How does the obtained result compare
with the compressibility of the corresponding non-interacting system? Are the feedback
effects really playing no role in the calculations of κT ?

8. Fermionic specific heat 1∗+1+2+1=4+1∗ points

The specific heat can be calculated from the entropy S as

cV = T
∂

∂T

(
S

V

)∣∣∣∣
V,µ

.

In the grand canonical ensemble the entropy can be obtained as the derivative with respect to
the temperature T of kBT logZ, where kB is the Boltzmann constant, β = (kBT )−1 and Z is
the partition function, i.e. Tr [ exp {−β(H− µN )}].

a) Calculate the entropy S of a non-interacting gas of fermions for which the partition function
can be easily calculated from

H =
∑
p

εpc†pcp and N =
∑
p

c†pcp

b) Show that S is also equal to −kB
∑

p [np lognp + (1− np) log(1− np)], where np is the Fermi
distribution function, and use it to derive an expression for the specific heat according to
the initial formula.

c) Rewrite the obtained expression for cV as an integral over the energy ε0p = p2

2m , using the
DOS as you learned in the first exercise of this class. Then, by performing the variable
substitution x = β(ε0 − µ) calculate the leading term of an expansion of cV for small T
(the so-called “Sommerfeld expansion”). To get a compact result assume that the DOS is
slowly varying around the Fermi energy and use the fact that the dimensionless integral∫

dx x2 ex/(ex + 1)2, when evaluated between −∞ and +∞, equals π2/3.

d) The same expression for the entropy given in b) holds for a Fermi liquid if one replaces np

with the quasi-particle distribution function 1/(e(β(εp−µ) + 1), εp being the quasi-particle
energy (see Eq. 1, and 6b)). Going through exactly the same steps to derive cV for the
non-interacting Fermi gas, one notices that a new term appears. Determine such term. It
can be shown, however, that such term can be neglected for this calculation. Derive hence
the final expression for the specific heat of a Fermi liquid and discuss how it compares to the
non-interacting cV .

∗ Bonus points Viel Spaß!
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