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9. Feynman Diagram “quiz” 1+0.5+1=2.5 points

Consider the following eight Feynman diagrams (for the Green function of an interacting elec-
tronic system):

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: eight Feynman diagrams of second and higher orders

a) Classify the eight diagrams as reducible (also defined as “type A” in the Lecture) or irre-
ducible, specifying if they are non-skeleton (“type B”), or skeleton∗ (“type C”) diagrams.
Then, draw a new irreducible skeleton diagram of third order different from any of those
appearing in Fig. 1.

b) Are any of the diagrams shown in Fig. 1 topologically equivalent? If yes, which ones?

c) Calculate the numerical prefactor of all the eight diagrams shown in Fig. 1, according to the
standard Feynman rules.

∗ As suggested by their name, the “skeleton” diagrams are diagrams, which do not contain any self-energy

insertion in the internal lines (“type C”) diagrams.

10. Linked-cluster Theorem 2.5∗ points

As it was discussed in the QFT lecture only connected Feynman diagrams has to be considered
when calculating the one-particle Green’s function. Starting from the perturbation expansion
of the Green’s function at T 6= 0, show that the time-ordered average for a given order n
of perturbation theory decomposes into a product of connected and a disconnected diagrams.
Prove that the disconnected factor cancels exactly the denominator Z = 〈S(β)〉0.
[Hint: Consider the n-th order term in the perturbation expansion of the numerator of the Green
function (∼ 〈T c(τ)c†(0)HV (τ1) · · ·HV (τn)〉0). According to the Wick theorem this can be written
in terms of connected (∼ 〈T c(τ)c†(0)HV (τ1) · · ·HV (τm)〉0) and disconnected contractions (∼
〈T HV (τm+1) · · ·HV (τn)〉0), with m = 1, · · ·n, and ...]

Please, see also Exercise 11) on next page
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11. Second-order self-energy diagram 1+2+0.5+1.5=5 points

V(q)

k, iωn

Figure 2: A second order diagram for the self-energy, Σ(2)(k, iωn). For the calculation, consider
that the incoming line has a definite spin, say σ =↑.

a) Write the explicit expression of the second-order self-energy diagram shown in Fig. 2 at
T 6= 0 in terms of the Green’s functions on the Matsubara axis.

b) Evaluate then the diagram by performing the two internal Matsubara sums. Discuss
what is the difference between considering a generic two-particle interaction HV =
1

2Ld

∑
kk′qσσ′ V (q)c†k+qσc

†
k′−qσ′ck′σ′ckσ and a local Hubbard interaction of the form HV =

U
∑

i ni↑ni↓ where the sum over i runs over all lattice sites and niσ = c†iσciσ.

c) Which can be a possible physical interpretation of the diagram?
[Hint: this diagram may be seen as the first one of a specific “series” of diagrams, whose
second term is the diagram (e) of Fig. 1 ...]

d) Calculate the imaginary part of the diagram on the real axis (in the case of the Hubbard in-
teraction). From the low-T and small-ω limit of this quantity one can provide an estimate of
the quasiparticle lifetime. Try to make such estimation, relating your results to the Exercise
4) “Decay of an electron close to the Fermi sea”. In particular, identify the contribution to
the scattering of “electron-like” and of “hole-like” quasiparticles and determine the frequency
dependence of ImΣ(2) in the low-T and small-ω limit.
[Hint: Rearrange the Fermi and Bose functions in such a way that the scattering process can
be described by two terms one of which can be obtained from the other by simply reverting
all momenta involved in the scattering process (i.e., by means of a particle-hole transforma-
tion!).]

∗ Bonus points Viel Spaß!
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