IFP TU Wien

5. Exercise of QFT for many-body systems

16.06.2011

12. "Absorption" and response functions 2+1

 $2+1.5=3.5 \ points$

Consider the following (external) perturbation term v(t) to the Hamiltonian \mathcal{H} of a given physical system:

$$v(t) = -\sum_{i} a_i(t) A_i.$$

so that the total Hamiltonian (system+ ext. perturbation) is $\mathcal{H}_t = \mathcal{H} + v(t)$.

a) From the Heisenberg equation of motion for \mathcal{H} , calculate the energy absorption rate for the given system

$$\left\langle \frac{d}{dt} \mathcal{H} \right\rangle_{v} \tag{1}$$

up to the second order in the external perturbation v(t).

Hint: Apply the "Kubo (Nakano) formula" to $\langle [\mathcal{H}, A_i] \rangle$ and use the Heisenberg equation of motion to rewrite $[\mathcal{H}, A_i(t)]$ as time derivative of $A_i(t)$. It is also useful to introduce a susceptibility defined as

$$\chi_{ij}(t-t') = -\frac{1}{i\hbar}\Theta(t-t')\langle [A_i(t), A_j(t')] \rangle_{v=0}$$

b) In the case of a monochromatic perturbation, namely $a_j(t) = \frac{1}{2} \left(a_j e^{-i\omega t} + a_j^* e^{i\omega t} \right)$ show that the temporal average of the energy absorption rate in Eq. (1) is related to the imaginary part of $\chi_{ij}(\omega)$.

13. Magnetic susceptibilities in d=2 1.5+1.5+1.5+2*=4.5 + 2* points

Consider a system of non-interacting electrons on a square lattice (with lattice spacing a = 1) in two dimensions at half-filling (particle-hole symmetric case), whose energy dispersion is given by

$$\varepsilon_{\mathbf{k}} = -2t \left(\cos k_x + \cos k_y\right).$$

- a) Expand $\varepsilon_{\mathbf{k}}$ around the saddle-point $S = (\pi, 0)$ and calculate the corresponding density of states around the saddle-point energy.
- b) Compute the ferromagnetic susceptibility, i.e. the Fourier transform of the Spin-Spin response function $\langle T_{\tau}S_z(\mathbf{r}_i,\tau)S_z(0,0)\rangle$ for a momentum $\mathbf{Q} = (0,0)$ and a frequency $\Omega_m = 0$, and, on the basis of the results of **13 a**), estimate the leading diverging term in the limit of $T \to 0$.

- c) Compute the antiferromagnetic susceptibility, i.e. the Fourier transform of the Spin-Spin response function $\langle T_{\tau}S_z(\mathbf{r}_i,\tau)S_z(0,0)\rangle$ for a momentum $\mathbf{Q} = (\pi,\pi)$ and a frequency $\Omega_m = 0$, and, on the basis of the results of **13 a**), estimate the leading diverging term in the limit $T \to 0$.
- d) Consider the same electronic system, but now in presence of a local (repulsive) Hubbard interaction U > 0, and calculate within the random-phase approximation (RPA) the two magnetic susceptibilities of **13b**) and **13c**) in the corresponding particle-hole channel. On the basis of your RPA calculations, make your final considerations about the tendency of the system towards a given magnetic order at T = 0.

^{*} Bonus points