5. Exercise of QFT for many-body systems

16.06.2011

12. "Absorption" and response functions

Consider the following (external) perturbation term $v(t)$ to the Hamiltonian \mathcal{H} of a given physical system:

$$
v(t)=-\sum_{i} a_{i}(t) A_{i} .
$$

so that the total Hamiltonian (system+ ext. perturbation) is $\mathcal{H}_{t}=\mathcal{H}+v(t)$.
a) From the Heisenberg equation of motion for \mathcal{H}, calculate the energy absorption rate for the given system

$$
\begin{equation*}
\left\langle\frac{d}{d t} \mathcal{H}\right\rangle_{v} \tag{1}
\end{equation*}
$$

up to the second order in the external perturbation $v(t)$.
Hint: Apply the "Kubo (Nakano) formula" to $\left\langle\left[\mathcal{H}, A_{i}\right]\right\rangle$ and use the Heisenberg equation of motion to rewrite $\left[\mathcal{H}, A_{i}(t)\right]$ as time derivative of $A_{i}(t)$. It is also useful to introduce a susceptibility defined as

$$
\chi_{i j}\left(t-t^{\prime}\right)=-\frac{1}{i \hbar} \Theta\left(t-t^{\prime}\right)\left\langle\left[A_{i}(t), A_{j}\left(t^{\prime}\right)\right]\right\rangle_{v=0}
$$

b) In the case of a monochromatic perturbation, namely $a_{j}(t)=\frac{1}{2}\left(a_{j} \mathrm{e}^{-i \omega t}+a_{j}^{*} \mathrm{e}^{i \omega t}\right)$ show that the temporal average of the energy absorption rate in Eq. (1) is related to the imaginary part of $\chi_{i j}(\omega)$.

13. Magnetic susceptibilities in $\mathbf{d}=\mathbf{2} \quad 1.5+1.5+1.5+2^{*}=4.5+2^{*}$ points

Consider a system of non-interacting electrons on a square lattice (with lattice spacing $a=1$) in two dimensions at half-filling (particle-hole symmetric case), whose energy dispersion is given by

$$
\varepsilon_{\mathbf{k}}=-2 t\left(\cos k_{x}+\cos k_{y}\right)
$$

a) Expand $\varepsilon_{\mathbf{k}}$ around the saddle-point $\mathrm{S}=(\pi, 0)$ and calculate the corresponding density of states around the saddle-point energy.
b) Compute the ferromagnetic susceptibility, i.e. the Fourier transform of the Spin-Spin response function $\left\langle T_{\tau} S_{z}\left(\mathbf{r}_{i}, \tau\right) S_{z}(0,0)\right\rangle$ for a momentum $\mathbf{Q}=(0,0)$ and a frequency $\Omega_{m}=0$, and, on the basis of the results of $\mathbf{1 3} \mathbf{a}$), estimate the leading diverging term in the limit of $T \rightarrow 0$.
c) Compute the antiferromagnetic susceptibility, i.e. the Fourier transform of the Spin-Spin response function $\left\langle T_{\tau} S_{z}\left(\mathbf{r}_{i}, \tau\right) S_{z}(0,0)\right\rangle$ for a momentum $\mathbf{Q}=(\pi, \pi)$ and a frequency $\Omega_{m}=0$, and, on the basis of the results of $\mathbf{1 3} \mathbf{a}$), estimate the leading diverging term in the limit $T \rightarrow 0$.
d) Consider the same electronic system, but now in presence of a local (repulsive) Hubbard interaction $U>0$, and calculate within the random-phase approximation (RPA) the two magnetic susceptibilities of $\mathbf{1 3 b}$) and $\mathbf{1 3} \mathbf{c}$) in the corresponding particle-hole channel. On the basis of your RPA calculations, make your final considerations about the tendency of the system towards a given magnetic order at $T=0$.

