2. Übung QFT für Vielteilchen-Systeme

22.03.2012, 14:00-16:00, Seminarraum 138C

1. Bose-distribution function

Consider a system of N non-interacting harmonic oscillators with frequencies ω_i , i.e.,

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \hat{\mathcal{H}}_i = \sum_{i=1}^{N} \hbar \omega_i (\hat{n}_i + \frac{1}{2}) \quad \hat{n}_i = \hat{a}_i^{\dagger} \hat{a}.$$
(1)

a) Z, the so called partition function ("Zustandssumme"), is defined as $Z = \text{Tr}\left(e^{-\beta\hat{\mathcal{H}}}\right)$. Show that the total energy of a system, given as $\langle \hat{\mathcal{H}} \rangle$ (see exercise 1), can be calculated as

$$E = \langle \hat{\mathcal{H}} \rangle = -\frac{\partial \ln Z}{\partial \beta}.$$
 (2)

b) Calculate the partition function Z for the Hamiltonian of Eq. (1) and show that the total energy can be written as

$$E = E_0 + \sum_{i=1}^{N} \hbar \omega_i b(\omega_i), \qquad (3)$$

where b is the Bose-distribution function

$$b(\omega_i) = \frac{1}{e^{\beta\hbar\omega_i} - 1},\tag{4}$$

and E_0 is the zero-point energy of N harmonic oscillators. <u>Hints:</u> Since the oscillators are non-interacting the eigenstates of the system (which one uses for calculating the trace), can be written as the product of one-oscillator eigenstates, i.e., $|\{n_i\}\rangle = |n_1\rangle \otimes \ldots \otimes |n_N\rangle$, where $n_i = 0 \ldots \infty$ is the occupation of the i-th oscillator.

2. Fermi-distribution function

 $3+3^*=6$ Punkte

The entropy S of a system with total energy E and N particles is given by

$$S(E,N) = -\ln W(E,N), \tag{5}$$

where (for a discrete system) W(E, N) is the number of configurations for given values of E and N.

The (discrete) one-particle energy-levels ε_i (non interacting) of the system are g_i -fold degenerate $(g_i \gg 1)$. For large systems $(N \gg 1)$ W can be approximated by

$$W = \prod_{i} w_i,\tag{6}$$

where w_i is the number of possible configurations of \bar{n}_i identical fermions in g_i degenerate states. Here, \bar{n}_i is the (still unknown!) most probable occupation of the (g_i -fold degenerate) energy level

1+3 Punkte

 ε_i and $g_i > \bar{n}_i$. The \bar{n}_i can be computed by finding the extremum of the entropy with respect to \bar{n}_i considering the constraints

$$E = \sum_{i} \varepsilon_{i} \bar{n}_{i} \tag{7}$$

$$N = \sum_{i} \bar{n}_{i}.$$
(8)

- a) Calculate w_i for a given (integer) number \bar{n}_i of fermions and degeneracy g_i (> \bar{n}_i) of the energy level ε_i . <u>Hint:</u> Start considering $g_i = 2, 3, 4, \ldots$ How many possible configurations exist for $\bar{n}_i = 1, 2, 3, \ldots$ independent fermions? Finally, calculate the number of configurations for a general g_i and \bar{n}_i .
- b) Calculate the extremum of the entropy $S = -\ln W$, with W as given in Eq. (6) with respect to \bar{n}_i . In order to include the constraints (7) and (8) use the Lagrange multipliers β for the energy and α for the particle number.

<u>Hints</u>: Make use of the Stirling formula for the factorial of a large number N:

$$\ln N! \sim N(\ln N - 1). \tag{9}$$

For further information see also Ref. 1.

[1] Kerson Huang, "Statistical Mechanics", chapter 4.3 and chapter 7.

^{*} Bonuspoints