2. Übung QFT für Vielteilchen-Systeme

22.03.2012, 14:00-16:00, Seminarraum 138C

1. Bose-distribution function

Consider a system of N non-interacting harmonic oscillators with frequencies ω_{i}, i.e.,

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{i=1}^{N} \hat{\mathcal{H}}_{i}=\sum_{i=1}^{N} \hbar \omega_{i}\left(\hat{n}_{i}+\frac{1}{2}\right) \quad \hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a} . \tag{1}
\end{equation*}
$$

a) Z, the so called partition function ("Zustandssumme"), is defined as $Z=\operatorname{Tr}\left(e^{-\beta \hat{\mathcal{H}}}\right)$. Show that the total energy of a system, given as $\langle\hat{\mathcal{H}}\rangle$ (see exercise 1), can be calculated as

$$
\begin{equation*}
E=\langle\hat{\mathcal{H}}\rangle=-\frac{\partial \ln Z}{\partial \beta} . \tag{2}
\end{equation*}
$$

b) Calculate the partition function Z for the Hamiltonian of Eq. (1) and show that the total energy can be written as

$$
\begin{equation*}
E=E_{0}+\sum_{i=1}^{N} \hbar \omega_{i} b\left(\omega_{i}\right), \tag{3}
\end{equation*}
$$

where b is the Bose-distribution function

$$
\begin{equation*}
b\left(\omega_{i}\right)=\frac{1}{e^{\beta \hbar \omega_{i}}-1}, \tag{4}
\end{equation*}
$$

and E_{0} is the zero-point energy of N harmonic oscillators.
Hints: Since the oscillators are non-interacting the eigenstates of the system (which one uses for calculating the trace), can be written as the product of one-oscillator eigenstates, i.e., $\left|\left\{n_{i}\right\}\right\rangle=\left|n_{1}\right\rangle \otimes \ldots \otimes\left|n_{N}\right\rangle$, where $n_{i}=0 \ldots \infty$ is the occupation of the i-th oscillator.

2. Fermi-distribution function

$$
3+3^{*}=6 \text { Punkte }
$$

The entropy S of a system with total energy E and N particles is given by

$$
\begin{equation*}
S(E, N)=-\ln W(E, N) \tag{5}
\end{equation*}
$$

where (for a discrete system) $W(E, N)$ is the number of configurations for given values of E and N.
The (discrete) one-particle energy-levels ε_{i} (non interacting) of the system are g_{i}-fold degenerate $\left(g_{i} \gg 1\right)$. For large systems $(N \gg 1) W$ can be approximated by

$$
\begin{equation*}
W=\prod_{i} w_{i} \tag{6}
\end{equation*}
$$

where w_{i} is the number of possible configurations of \bar{n}_{i} identical fermions in g_{i} degenerate states. Here, \bar{n}_{i} is the (still unknown!) most probable occupation of the (g_{i}-fold degenerate) energy level
ε_{i} and $g_{i}>\bar{n}_{i}$. The \bar{n}_{i} can be computed by finding the extremum of the entropy with respect to \bar{n}_{i} considering the constraints

$$
\begin{align*}
& E=\sum_{i} \varepsilon_{i} \bar{n}_{i} \tag{7}\\
& N=\sum_{i} \bar{n}_{i} . \tag{8}
\end{align*}
$$

a) Calculate w_{i} for a given (integer) number \bar{n}_{i} of fermions and degeneracy $g_{i}\left(>\bar{n}_{i}\right)$ of the energy level ε_{i}. Hint: Start considering $g_{i}=2,3,4, \ldots$ How many possible configurations exist for $\bar{n}_{i}=1,2,3, \ldots$ independent fermions? Finally, calculate the number of configurations for a general g_{i} and \bar{n}_{i}.
b) Calculate the extremum of the entropy $S=-\ln W$, with W as given in Eq. (6) with respect to \bar{n}_{i}. In order to include the constraints (7) and (8) use the Lagrange multipliers β for the energy and α for the particle number.
Hints: Make use of the Stirling formula for the factorial of a large number N :

$$
\begin{equation*}
\ln N!\sim N(\ln N-1) \tag{9}
\end{equation*}
$$

For further information see also Ref. 1.
[1] Kerson Huang, "Statistical Mechanics", chapter 4.3 and chapter 7.

