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1. Second order Feynman diagrams 2+1=3 Punkte

When considering the perturbation theory of the Green’s function, at the second order, one has
to calculate, using Wick’s theorem, all the contractions/Feynman diagrams of
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Due to the Linked Cluster Theorem only the connected contributions need to be considered.
a) Draw ten among all second order Feynman diagrams corresponding to ten connected second

order contractions.
b) For one of these Feynman diagrams explicitly write the analytic espression in terms of Green’s

functions.

2. How to sum over Matsubara frequencies 2+1+2+2∗=5+2∗ Punkte

When performing the explicit evaluation of Feynman diagrams in terms of physical quantities, a
typical intermediate step is the evaluation of sums over Matsubara frequencies. We will consider
here the simplest cases, which represent, however, the basis for performing more complicate
calculations occurring in realistic situations.
The particle density 〈n〉 of an electronic system can be expressed in term of the Green-function
as follows
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where, as it was discussed in the Lecture, the fermionic Green’s function in imaginary time is
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being Z the partition function, β the inverse temperature and T is the imaginary-time ordering
operator. Since G(k, τ) and its Fourier transform G(k, iωn) are related in the following way:
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where the sum is over the Matsubara frequencies ωn = π
β
(2n+1), from the definition (4) we get
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e−iωn0−G(k, iωn). (6)
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a) Perform the Matsubara sum in (6) for the case of non-interacting electrons with energy
dispersion ǫk, whose Green function is given by G(k, iωn)= 1

iωn−ǫk
[Hint: since iωn are the

simple poles of the Fermi distribution function in the complex plane with residue −β−1,

the Matsubara sum can be rewritten as an integral over a contour enclosing all Matsubara

frequencies. Next, exploiting the analytic properties of the integrand, it is convenient to

further transform such contour into two disconnected contours extending in the whole complex

plane...]

b) Think about a possible numerical implementation of Eq. (6), e.g. suppose one knows the
value of G(k, iωn) for a finite set of frequencies (say from −iωM to iωM ) . What would be
wrong with a “straightforward” numerical evaluation of such expression (i.e., just summing
up all values available)? Suggest possible tricks to correct the problems encountered and to
get reliable numerical results.

c) Often one has to calculate so-called “bubble” diagrams of the form
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G(k, iωn)G(k + q, iωn + iΩm) (7)

where Ωm is an “external” bosonic Matsubara frequency given by 2mπ/β. Using the free
particle case again, calculate the expression (7) analytically, and discuss explicitly the results
for the two limiting cases (i) Ωm = 0,q → 0 (“static limit”), or (ii) q = 0, Ωm → 0 (“dynamic
limit”). [Hint: a convenient way of proceeding is to use a partial fraction decomposition.]

d) Consider again the Matsubara summation of 5a), but now for an interacting electronic
system. Use the spectral representation of the Green function G(k, iωn) to rewrite the
Matsubara of (6) in terms of the Fermi function f(ω) and of the spectral function A(k, ω) =
− 1

π
ImGR(k, ω). Verify that it reproduces the explicit results of 5a) in the case of a non-

interacting system (i.e., when G(k, iωn) = 1

iωn−ǫk
).

∗ Bonus points Viel Spaß!
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