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3. Decay of an electron close to the Fermi sea 3+1∗ points

The possibility of treating a many-electron system in terms of independent excitations (the
so-called “quasi-particles”) relies on the fact that for metallic systems the electronic scattering
between two particles at the Fermi energy εF is vanishing. Specifically, it is possible to show
this by means of a phase-space argument: Consider the following elastic scattering process at
T = 0. An incoming electron with fixed momentum k1 and energy ε1 > εF is scattered by one
of the electrons of the metallic system (i.e., with momentum k2 and energy ε2 < εF ). If the
scattering takes place, one will observe two outgoing particles with energies ε3, ε4 > εF . The
corresponding “decay” probability for the incoming electron can be estimated as

γ ∝
∫

ddk2 d
dk3 d

dk4 δ(k1 + k2 − k3 − k4) δ(ε1 + ε2 − ε3 − ε4)

=

∫
ddk2 d

dk3 δ(ε1 + ε2 − ε3 − ε4), (1)

where the delta functions ensure the energy and momentum conservation of the process. The
formally correct way of evaluating γ would be to perform the relatively cumbersome integrals
over the momenta k2, k3 taking into account that ε4 is a function of their lengths k2, k3 and of
the angle between them.

a) A much simpler way to evaluate the “decay” probability γ in d > 2, is to rewrite Eq. 1 as

γ ∼
∫
dε2 dε3 (2)

and use the delta function only as a constraint to set the limits of the two energy integrals.
Using Eq. 2 evaluate γ as a function of ε1, εF and interpret the results in terms of the
Fermi-liquid theory.

b) How would Eq. 1 change in the case T 6= 0? And how would the estimate of 4a) for
γ change, assuming that for T 6= 0 the incoming electron with energy ε1 is a thermally
activated particle?

4. How to sum over Matsubara frequencies 3+2+2+2∗=7+2∗ points

As it was discussed in the Lecture, the fermionic Green function in imaginary time reads

G(k, τ) = − 1

Z
Tr

{
e−βHT

[
ck(τ)c†k(0)

]}
(3)

being Z the partition function, β the inverse temperature and T is the imaginary-time ordering
operator. When transforming this expression to frequency space

G(k, τ) =
1

β

∑
n

e−iωnτG(k, iωn), (4)
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using the cyclic properties of the trace, one can immediately deduce that the sum in Eq. 4 has to
be performed only over the discrete so-called fermionic Matsubara frequencies ωn = π

β (2n+ 1).
When performing the explicit evaluation of Feynman diagrams in terms of physical quantities, a
typical intermediate step consists exactly of this evaluation of sums over Matsubara frequencies.
We will consider here the simplest cases, which represent, however, the basis for performing
more complicate calculations occurring in realistic situations.

The particle density 〈n〉 of an electronic system can be expressed in term of the Green function
as follows

〈n〉 =
1

Ld

∑
k

〈c†kck〉 =
1

Ld

∑
k

G(k, τ = 0−) (5)

=
1

Ld

∑
k

1

β

∑
n

e−iωn0−G(k, iωn) (6)

a) Perform the Matsubara sum in (6) for the case of non-interacting electrons with energy
dispersion εk, whose Green function is given by G(k, iωn)= 1

iωn−εk [Hint: note that iωn are
exactly the simple poles of the Fermi distribution function in the complex plane with residue
−β−1. This means that the Matsubara sum can be written as an integral over a contour
enclosing all Matsubara frequencies. Note also that the Green function is analytic in the
lower/upper complex half-plane. Exploiting these analytic properties of the integrand, it is
convenient to further transform this contour into two disconnected contours extending in the
whole complex plane.]

b) Think about a possible numerical implementation of Eq. (6), e.g. suppose one knows the
value of G(k, iωn) for a finite set of frequencies (say from −iωM to iωM ) . What would be
wrong with a “straightforward” numerical evaluation of such expression (i.e., just summing
up all values available)? Suggest possible tricks to correct the problems encountered and to
get reliable numerical results.

c) Often one has to calculate so-called “bubble” diagrams of the form

1

Ld

∑
k

1

β

∑
n

G(k, iωn)G(k + q, iωn + iΩm) (7)

where Ωm is an “external” bosonic Matsubara frequency given by Ωm = 2mπ/β. Using the
free particle case again, calculate the expression (7) analytically, and discuss explicitly the
results for the two limiting cases (i) Ωm = 0,q → 0 (“static limit”), and (ii) q = 0,Ωm →
0 (“dynamic limit”). [Hint: a convenient way of proceeding is to use a partial fraction
decomposition.]

d) Consider again the Matsubara summation of 5a), but now for an interacting electronic
system, whose Green function can be written as G(k, iωn) = 1

iωn−εk−Σ(k,iωn) , where Σ(k, iωn)

is the electronic self-energy. While the Matsubara summation of (6) cannot be performed
any longer exactly, it is possible to express it in terms of the Fermi function f(ω) and of the
spectral function A(k, ω) = − 1

π ImGR(k, ω). Derive such an expression for the Matsubara
summation of (6), and verify that it reproduces the explicit results of 5a) in the case of a
non-interacting system (i.e., when Σ(k, iωn) = 0).

∗ Bonus points Viel Spaß!

2


