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Intro: The Fermi liquid (FL) theory by Lev Landau, postulating the existence of independent

quasi-particles with the same charge and spin of the original electrons but with energy εp 6= p2

2m ,
allows to solve the “puzzle” of the metallic physics, that is to understand why the qualitative
behavior of several observables in metals resembles so closely that of a non-interacting (!) elec-
tron gas. Starting point of this phenomenological approach is the consideration that the energy
change δE due to adding/removal of quasiparticles (δnp,σ) with momentum p and spin σ to/from
the Fermi sphere is given by the following functional (note that in the truly non-interacting case,
this would just be a number) :

δE[δnp,σ] =
∑
p,σ

ε̃p δnp,σ +
1

2

∑
p,p′;σ,σ′

fσ,σ′ (p,p
′) δnp,σ δnp′,σ′ + · · · (1)

The coefficients of the first term of the sum (ε̃p) , which represents the energies for creating an
excitation with momentum p without considering the feedback effect of the other quasiparticles,
are usually expanded (in the isotropic case) as ε̃p ∼ ε̃F + ṽF (p − pF ) + · · · , whereas vF =

|∂ε̃p∂p |p=pF | '
pF
m∗ , being m∗ the (enhanced) effective mass1. Finally, it is important to note that

the quasi-particle distribution function np has the same form of as for non-interacting electrons,
but in term of the quasiparticle energy εp.

5. First steps in calculating a Fermi liquid (FL) 1+1∗+2=3+1∗ points

a) Verify that the so-called quasiparticle density of states for ε = ε̃F defined as Ñ(ε) =
1
Ld

∑
p δ(ε− ε̃p) can be easily expressed as m∗

m N(εF ), where N(εF ) is the DOS of the corre-
sponding non-interacting system.

b) Derive from Eq. 1, the formal expression of the (full) quasi-particle energy, defined as the
energy necessary to add an excitation of momentum p close to the Fermi level, that is
εp = δE

δnp,σ
. Which is the physical meaning of the term correcting the value of ε̃p ? Are the

values of εp depending on temperature or chemical potential? Motivate your answer.

c) Calculate the specific heat at constant volume cV for the non-interacting Fermi gas in three
dimensions:

cV =

(
∂E

∂T

)
V

where for this specific case

E = Ekin =

〈∑
~p,σ

εpc
†
~p,σc~p,σ

〉
with εp =

p2

2m

What is the temperature dependence of cV ? How will the final result change for interacting
electrons under the assumption that the Fermi liquid theory can be applied?

1As explained in the Lecture the mass enhancement can be related microscopically to the momentum and
frequency derivatives of the self-energy at the Fermi level (see also exercise 6).
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6. FL parameters from a microscopic theory 1+2+1=4 points

In interacting microscopic theories one of the most important quantities is, arguably, the self-
energy Σ(~k, ω). In the lecture it was shown that for a metal one can connect values extracted
out of a Taylor expansion of the self-energy around the Fermi level to the phenomenological
parameters of the Landau Fermi liquid theory.

In particular, if the self-energy out of the microscopic theory considered (e.g. dynamical mean
field theory) is purely local [i.e., not ~k-dependent: Σ(~k, ω) = Σ(ω)], one obtains the following
relations:

Z =

[
1− ∂Re Σ(ω)

∂ω

∣∣∣∣
ω→0

]−1
,

m∗

m
= Z−1, Γ = −Im Σ(ω)

∣∣
ω→0

(2)

where Z is the quasiparticle weight, m∗ the effective mass and Γ defines the quasiparticle scat-
tering rate so that the quasiparticle lifetime is τ = (2ZΓ)−1.

Now consider the file siw-data.txt. It contains local fermionic self-energies on the positive
Matsubara axis Σc(iνn) for four different physical cases c = 1, 2, 3, 4 at the inverse temperature
β = 50 eV−1. The format of the columns in the file is νn — Re Σ1(iνn) — Im Σ1(iνn) — Re
Σ2(iνn) ...

a) Plot the real and imaginary parts of the self-energies in all cases, respectively.

b) For cases one to three numerically extract the quasiparticle weight Z, the effective mass m∗

m
and Γ. What is the difference between these cases and how could one interpret those? Hint:
In principle one would have to analytically continue the self-energy from the Matsubara to
the real frequency axis (iνn → ω + iδ). However, indicative results can also be obtained by
simply using a polynomial fit of Σ(iνn) in the region of low (positive) Matsubara frequencies
and extracting the parameters out of it thereafter via the following modified formulas:

Z =

[
1− ∂Im Σ(iνn)

∂νn

∣∣∣∣
νn→0

]−1
, Γ = −Im Σ(iνn)

∣∣
νn→0

c) What about the fourth case?

7. From causality to Kramers-Kronig relations 3 points

In this exercise it should be demonstrated that the Kramers-Kronig relations for a frequency-
dependent function f̃(ω) are a consequence of the causality of its inverse Fourier transform
f(t) in the time regime, i.e., of the property f(t) ≡ 0 for t < 0. The goal is to derive the
Kramers-Kronig relations for f̃(ω) by starting from the identity f(t) = f(t)θ(t). Hint: For your
calculations use the convolution theorem and the Fourier transform of the θ-function, which has
been discussed in the lecture.

∗ Bonus points Viel Spaß!
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