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TU Wien

5. Exercise on QFT for many-body systems
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Consider the Hubbard-Hamiltonian given by

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ + U

∑
i

ĉ†i↑ĉi↑︸ ︷︷ ︸
n̂i↑

ĉ†i↓ĉi↓︸ ︷︷ ︸
n̂i↓

− µ
∑
i

(ni↑ + ni↓)︸ ︷︷ ︸
n̂i

. (1)

The term containing µ fixes the number of particles. Specifically, we consider the case of half-
filling (with particle-hole symmetry), where we have 〈n̂i〉 = 1 particle per site. This corresponds
to µ = U

2
.

12. The Green function in limiting cases 1.5+1+0.5+1+1+1+2∗=6+2∗ points

First, assume that the electrons governed by the Hamiltonian in Eq. 1 are non-interacting, i.e.,
U=0.

a) Compute the one-particle Green function Gσ(τ,k) by directly calculating the trace in the
definition

Gσ(τ,k) = − 1

Z
Tr

[
e−βĤĉkσ(τ)ĉ†kσ

]
, β ≥ τ ≥ 0 (2)

of the Green function. (The partition function is defined as Z = Tr[e−βĤ].)

Hint: Use the Lehmann representation, i.e. perform the trace over the basis of the eigenvalues
and insert the completeness relation, where needed.

b) Continue the result obtained in a) for Gσ(τ,k) to real times by the inverse Wick-rotation
τ → it. Give a physical interpretation for the result.

c) Calculate the Green function Gσ(iωn,k) in Matsubara frequency space by performing the
Fourier-transform

Gσ(iωn,k) =

∫ β

0
dτ eiωnτGσ(τ,k), (3)

where ωn = π
β (2n+ 1), n ∈ Z is a fermionic Matsubara frequency. Then continue the results

on the real frequency axis and calculate the corresponding spectral function A(k, ω).

Now, consider the opposite limit where the kinetic energy appearing in the Hamiltonian in eq.
1 is negligible compared to the interaction, i.e., εk=0.

d) Compute the (local) Green function for site i, Giσ(τ), defined as

Giσ(τ) = − 1

Z
Tr

[
e−βĤĉiσ(τ)ĉ†iσ

]
, β ≥ τ ≥ 0 (4)

by directly evaluating the trace using the Lehmann representation.

Hint: Consider that the different atoms are completely independent and, hence, one can
evaluate the trace by using the occupation-basis for one site, which consists of four states.
Which are these?
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e) Calculate the Green function Giσ(iωn) in frequency-space by performing the Fourier trans-
form for the result obtained in d).

f) From the exact expression of Giσ(iωn) in the atomic limit, extract the corresponding expres-
sion for the self-energy Σiσ(iωn). Is the atomic-limit expression derivable within conventional
perturbation theory?

g) Perform the analytic continuation of Giσ(iωn) on the real axis, and calculate the correspond-
ing spectral function Aiσ(ω). How can we interpret the spectral function result?

13. Charge susceptibility in RPA 2+2=4 points

As it will be discussed in the next Lecture (11/06/2015 on linear response theory), the reaction
of an electronic system to a (weak) external perturbation potential Vext(q, ω) can be obtained
via the polarization function Π(q, ω), which is the proportionality factor between the induced
charge density nind(q, ω) and the external potential. Assuming the perturbation is weak (so
that the induced density is directly proportional to it), we have

nind(q, ω) = Π(q, ω)Vext(q, ω),

where the polarization function can be calculated in imaginary time τ > 0 as

Π(q, τ) = −〈Tτnind(q, τ)nind(−q, 0)〉 (5)

where
nind(q, τ) = n(q, τ)− n0 δ(q), n(q, τ) =

∑
k

c†k(τ)ck+q(τ)

and n0 is the average filling of the non-interacting system.

a) Evaluate the polarization for the non-interacting case U = 0, i.e. Π0(q, iωn), by first using
Wick’s theorem and second performing a Fourier transform to Matsubara frequencies.

b) Let us consider now the case of an Hubbard model at finite U > 0. Use the random phase
approximation (RPA) to calculate the polarization at U 6= 0, i.e. ΠRPA(q, iωn). What is the
physical meaning of the result? How would the physics change, if we considered an attractive
Hubbard model (U < 0)? Why?

Hint: For the final physical questions it is sufficient to consider the static limit of the polar-
ization, i.e. ωn = 0, q→ 0.

∗ Bonus points Viel Spaß!
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