5. Exercise on QFT for many-body systems

Consider the Hubbard-Hamiltonian given by

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{\mathbf{k} \sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k} \sigma}^{\dagger} \hat{c}_{\mathbf{k} \sigma}+U \sum_{i} \underbrace{\hat{c}_{i \uparrow}^{\dagger} \hat{c}_{i \uparrow}}_{\hat{n}_{i \uparrow}} \underbrace{\hat{c}_{i \downarrow}^{\dagger} \hat{c}_{i \downarrow}}_{\hat{n}_{i \downarrow}}-\mu \sum_{i} \underbrace{\left(n_{i \uparrow}+n_{i \downarrow}\right)}_{\hat{n}_{i}} . \tag{1}
\end{equation*}
$$

The term containing μ fixes the number of particles. Specifically, we consider the case of halffilling (with particle-hole symmetry), where we have $\left\langle\hat{n}_{i}\right\rangle=1$ particle per site. This corresponds to $\mu=\frac{U}{2}$.

12. The Green function in limiting cases $1.5+1+0.5+1+1+1+2^{*}=6+2^{*}$ points

First, assume that the electrons governed by the Hamiltonian in Eq. 1 are non-interacting, i.e., $U=0$.
a) Compute the one-particle Green function $G_{\sigma}(\tau, \mathbf{k})$ by directly calculating the trace in the definition

$$
\begin{equation*}
G_{\sigma}(\tau, \mathbf{k})=-\frac{1}{\mathcal{Z}} \operatorname{Tr}\left[e^{-\beta \hat{\mathcal{H}}_{\hat{\mathbf{c}}}^{\mathbf{k} \sigma}} .(\tau) \hat{c}_{\mathbf{k} \sigma}^{\dagger}\right], \quad \beta \geq \tau \geq 0 \tag{2}
\end{equation*}
$$

of the Green function. (The partition function is defined as $\mathcal{Z}=\operatorname{Tr}\left[e^{-\beta \hat{\mathcal{H}}}\right]$.)
Hint: Use the Lehmann representation, i.e. perform the trace over the basis of the eigenvalues and insert the completeness relation, where needed.
b) Continue the result obtained in \mathbf{a}) for $G_{\sigma}(\tau, \mathbf{k})$ to real times by the inverse Wick-rotation $\tau \rightarrow i t$. Give a physical interpretation for the result.
c) Calculate the Green function $G_{\sigma}\left(i \omega_{n}, \mathbf{k}\right)$ in Matsubara frequency space by performing the Fourier-transform

$$
\begin{equation*}
G_{\sigma}\left(i \omega_{n}, \mathbf{k}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{n} \tau} G_{\sigma}(\tau, \mathbf{k}) \tag{3}
\end{equation*}
$$

where $\omega_{n}=\frac{\pi}{\beta}(2 n+1), n \in \mathbb{Z}$ is a fermionic Matsubara frequency. Then continue the results on the real frequency axis and calculate the corresponding spectral function $A(k, \omega)$.

Now, consider the opposite limit where the kinetic energy appearing in the Hamiltonian in eq. 1 is negligible compared to the interaction, i.e., $\varepsilon_{\mathbf{k}}=0$.
d) Compute the (local) Green function for site $i, G_{i \sigma}(\tau)$, defined as

$$
\begin{equation*}
G_{i \sigma}(\tau)=-\frac{1}{\mathcal{Z}} \operatorname{Tr}\left[e^{-\beta \hat{\mathcal{H}}_{\hat{c}}^{i \sigma}}(\tau) \hat{c}_{i \sigma}^{\dagger}\right], \quad \beta \geq \tau \geq 0 \tag{4}
\end{equation*}
$$

by directly evaluating the trace using the Lehmann representation.
Hint: Consider that the different atoms are completely independent and, hence, one can evaluate the trace by using the occupation-basis for one site, which consists of four states. Which are these?
e) Calculate the Green function $G_{i \sigma}\left(i \omega_{n}\right)$ in frequency-space by performing the Fourier transform for the result obtained in \mathbf{d}).
f) From the exact expression of $G_{i \sigma}\left(i \omega_{n}\right)$ in the atomic limit, extract the corresponding expression for the self-energy $\Sigma_{i \sigma}\left(i \omega_{n}\right)$. Is the atomic-limit expression derivable within conventional perturbation theory?
g) Perform the analytic continuation of $G_{i \sigma}\left(i \omega_{n}\right)$ on the real axis, and calculate the corresponding spectral function $A_{i \sigma}(\omega)$. How can we interpret the spectral function result?

13. Charge susceptibility in RPA

As it will be discussed in the next Lecture (11/06/2015 on linear response theory), the reaction of an electronic system to a (weak) external perturbation potential $V_{\text {ext }}(\mathbf{q}, \omega)$ can be obtained via the polarization function $\Pi(\mathbf{q}, \omega)$, which is the proportionality factor between the induced charge density $n_{\text {ind }}(\mathbf{q}, \omega)$ and the external potential. Assuming the perturbation is weak (so that the induced density is directly proportional to it), we have

$$
n_{\mathrm{ind}}(\mathbf{q}, \omega)=\Pi(\mathbf{q}, \omega) V_{\mathrm{ext}}(\mathbf{q}, \omega),
$$

where the polarization function can be calculated in imaginary time $\tau>0$ as

$$
\begin{equation*}
\Pi(\mathbf{q}, \tau)=-\left\langle T_{\tau} n_{\text {ind }}(\mathbf{q}, \tau) n_{\text {ind }}(-\mathbf{q}, 0)\right\rangle \tag{5}
\end{equation*}
$$

where

$$
n_{\text {ind }}(\mathbf{q}, \tau)=n(\mathbf{q}, \tau)-n_{0} \delta(\mathbf{q}), \quad n(\mathbf{q}, \tau)=\sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger}(\tau) c_{\mathbf{k}+\mathbf{q}}(\tau)
$$

and n_{0} is the average filling of the non-interacting system.
a) Evaluate the polarization for the non-interacting case $U=0$, i.e. $\Pi_{0}\left(\mathbf{q}, i \omega_{n}\right)$, by first using Wick's theorem and second performing a Fourier transform to Matsubara frequencies.
b) Let us consider now the case of an Hubbard model at finite $U>0$. Use the random phase approximation (RPA) to calculate the polarization at $U \neq 0$, i.e. $\Pi_{\mathrm{RPA}}\left(\mathbf{q}, i \omega_{n}\right)$. What is the physical meaning of the result? How would the physics change, if we considered an attractive Hubbard model $(U<0)$? Why?
Hint: For the final physical questions it is sufficient to consider the static limit of the polarization, i.e. $\omega_{n}=0, \mathbf{q} \rightarrow 0$.

