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5. Fermi liquid parameters from microscopic theories 1+2+1=4
points

In interacting microscopic theories one of the most important quantities is, arguably, the self-
energy Σ(~k, ω). In the lecture it was shown that for a metal one can connect values extracted
out of a Taylor expansion of the self-energy around the Fermi level to the phenomenological
parameters of the Landau Fermi liquid (FL) theory.

In particular, if the self-energy out of the microscopic theory considered (e.g. dynamical mean
field theory) is purely local [i.e., not ~k-dependent: Σ(~k, ω) = Σ(ω)], one obtains the following
relations:
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where Z is the quasiparticle weight, m∗ the effective mass and Γ defines the quasiparticle scat-
tering rate so that the quasiparticle lifetime is τ = (2ZΓ)−1.

Now consider the file siwdat.txt. It contains local fermionic self-energies on the positive Mat-
subara axis Σc(iνn) for four different physical cases c = 1, 2, 3, 4 at the inverse temperature
β = 50 eV−1. The format of the columns in the file is νn — Re Σ1(iνn) — Im Σ1(iνn) — Re
Σ2(iνn) ...

a) Plot the real and imaginary parts of the self-energies in all cases, respectively.

b) For cases one to three numerically extract the quasiparticle weight Z, the effective mass m∗

m
and Γ. What is the difference between these cases and how could one interpret those? Hint:
In principle one would have to analytically continue the self-energy from the Matsubara to
the real frequency axis (iνn → ω + iδ). However, show that these parameters can also be
approximately obtained directly at Matsubara as following:
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c) What about the fourth case? See also exercise 6.

6. A very simple model with strong correlations 1+3+2=6 points

Landau FL theory, as a theory for metals, reproduces many qualitative features of the non-
interacting Fermi gases. In FL systems, the screened Coulomb energy is much smaller than the
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electronic kinetic energy. As a result, the electron-electron interactions can be treated as small
perturbations to the motion of the electrons at the Fermi level.

However, in a different limit, i.e. when Coulomb energy is much stronger than the electronic
kinetic energy, FL theory will not hold anymore. An intuitive, yet simple, example for un-
derstanding the complete disappearance of coherent quasiparticles due to the strong electron-
electron correlations is the Hubbard model in the “atomic limit”, which reads:

Hat = Un↑n↓ − µ(n↑ + n↓) . (2)

Let us consider, here, the half filling case, i.e. 1 electron per site, obtained for chemical potential
µ = U

2 , which we absorb in the Hamiltonian of Eq. (2). We observe that only one energy scale
appears in this model, i.e. the local Coulomb repulsion U .
As the particle numbers n↑ and n↓ are good quantum numbers of this Hamiltonian, the basis of
the problem can be simply taken as the number basis:

|0〉, | ↑〉, | ↓〉, | ↑↓〉 , (3)

which represents the empty, singly occupied (with up/down spin) and doubly occupied states,
respectively.

a) Show that the states in Eq. (3) are also the eigenstates of Hat and find the corre-
sponding eigenenergies. Show the partition function at inverse temperature β is given as
Z = Tre−βH = 2(1 + eβU/2).

b) Try to express the creation and annihilation operators ĉ†σ and ĉσ as 4 × 4 matrices in the
above basis. Show that the imaginary-time Green’s function is given by

Gσ(τ) = −〈Tτ ĉσ(τ)ĉ†σ〉 = − 1

Z
Tr[e−βH ĉσ(τ)ĉ†σ] = −e

U
2
τ + e(β−τ)

U
2

Z
, (4)

where σ stands for the spin orientation ↑ (or ↓)

c) Fourier transform the imaginary-time Green’s function Gσ(τ) to Matsubara space to get

Gσ(iνn) =
∫ β
0 Gσ(τ)eiνnτdτ and determine the corresponding spectral function Aσ(ω) and

the self-energy Σσ(ω). [Hint: to get Aσ(ω) at real frequency axis, an analytical continuation
iνn → ω + iδ is required]. Does the system have an energy gap, and if so how large is it?
Do we have well-defined quasiparticle in this case? [Hints: try to determine the quasiparitcle
weight Z, effective mass m∗ and scattering rate Γ as defined in Eq. (1).]

Viel Spaß!
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