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1. Exercise on QFT for many-body systems
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TUTORIUM: Friday, 23.03.2018.

1. Getting familiar with the Density of States 1+1+2+2=6 Punkte

The calculation of thermodynamic quantities, response functions and Feynman diagrams in QFT
for condensed matter systems often requires the evaluation of integrals or sums over all momenta
k (typically over the first Brillouin Zone). An important simplification of these k-summations
is possible, however, when the integrand F depends on the energy only. In this case the
integration/sum is best performed by using the energy ε as a variable. In the case of a cubic
lattice of volume Ld in d dimensions, for a given observable F , we have:

F =
1

Ld

∑
k

F(εk) =
1

(2π)d
(2π)d

Ld

∑
k

F(εk) =

∫
dεN (ε)F(ε)

or, for the continuous case, F =
1

(2π)d

∫
ddk F(εk) =

∫
dεN (ε)F(ε),

where N (ε), i.e. the so-called Density of States (DOS), which can be defined by comparison
of the different expressions as

N (ε) =
1

Ld

∑
k

δ(ε− εk) or, for the continuous case, (2a)

N (ε) =
1

(2π)d

∫
ddk δ(ε− εk). (2b)

a) Consider the two cases of particles which can move freely and particles whose motion is
bound to an infinite lattice with lattice spacing a. Which of the above expressions (eqn.
(2a) or (2b)) do you have to use in the first and second case, respectively? Is the inte-
gral/summation restricted to certain k-vectors? How does the result change, if one considers
a one-dimensional, finite lattice (N lattice points, lattice spacing a) with periodic boundary
conditions?

b) Calculate and plot the explicit expression for N (ε) for free, non-interacting particles of mass

m (so that εk = ~2k2
2m ) in one, two and three dimensions. How do the corresponding Fermi

surfaces look like in these cases?

c) Consider the following one-dimensional tight-binding Hamiltonian

H = −t
∑
〈i,j〉

[
c†i,σcj,σ + h.c.

]

with hopping (t > 0) restricted to neighboring sites, where c†i,σ and ci,σ are the cre-
ation/annihilation operators for one electron with spin σ =↑, ↓ at the position xi = i a
with i = 0, 1, ..., N − 1 and a being the lattice spacing. Assuming periodic boundary con-
ditions (x0 = xN ), compute the corresponding eigenenergies, e.g., using the following basis

transformation (from real to momentum space) c†k,σ = 1√
N

∑
xi

e−ikxic†i,σ for the fermionic
operators.
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d) How can one extend the results of 1c) to arbitrary dimensions d > 1? Plot numerically1

the DOS N (ε) for the cases d = 1, 2, 3 with ~ = m = t = a = 1. Which are the most
prominent features of these DOS functions and at which energies ε do they occur? How
would the corresponding Fermi surfaces look like for the cases d = 1, 2, e.g. if one has an
average density of one electron per site (half-filled system)?

2. Screened and unscreened Coulomb Potentials 1.5+2.5=4 Punkte

a) From the integral representation of the delta function,

δ(r) =

∫
d3k

(2π)3
eik·r

and the fact that the Coulomb potential φ(r) = −e/r satisfies Poisson’s equation,

−∇2φ(r) = −4πeδ(r),

show that the electronic pair potential, V (r) = −eφ(r) = e2/r, can be written in the form

V (r) =

∫
d3k

(2π)3
eik·r V (k),

where the Fourier transform V (k) is given by

V (k) =
4πe2

k2

b) Show that the Fourier transform of the screened Coulomb interaction Vs(r) = (e2/r)e−kTF r

is

Vs(k) =
4πe2

k2 + k2TF
(3)

by substituting eqn. (3) into the Fourier integral

Vs(r) =

∫
d3k

(2π)3
eik·r Vs(k),

and evaluating that integral in spherical coordinates (Hint: The radial integral is best done
as a contour integral.). Finally, deduce from eqn. (3) that Vs(r) satisfies(

−∇2 + k2TF
)
Vs(r) = 4πe2δ(r)

1using, e.g. Mathematica or Fortran in combination with gnuplot (http://www.gnuplot.info/)
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