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6. Exercise on QFT for many-body systems

Sommersemester 2021

TUTORIUM: Friday, 25.06.2021.

Consider the Hubbard-Hamiltonian given by

Ĥ =
∑
kσ

εkĉkσ ĉ
†
kσ + U

∑
i

ĉ†i↑ĉi↑︸ ︷︷ ︸
n̂i↑

ĉ†i↓ĉi↓︸ ︷︷ ︸
n̂i↓

− µ
∑
i

(ni↑ + ni↓)︸ ︷︷ ︸
n̂i

. (1)

The term containing µ fixes the number of particles. Specifically, we consider the case of half-
filling where we have 〈n̂i〉 = 1 particle per site. This corresponds to µ = U

2
.

12. The Green’s function in limiting cases 1+1+0.5+0.5+2=5 points

First, assume that the electrons governed by the Hamiltonian in Eq. (1) are non-interacting,
i.e., U=0.

a) Compute the one-particle Green’s function Gσ(k, τ) by directly calculating the trace in the
definition

Gσ(k, τ) = − 1

Z
Tr

[
e−βĤ ĉkσ(τ)ĉ†kσ

]
, β ≥ τ ≥ 0 (2)

of the Green’s function. (The partition function is defined as Z = Tr[e−βĤ ].)

Hint: Use the Lehmann representation, i.e. perform the trace over the basis of the eigenvalues
and insert the completeness relation, where needed.

b) Continue the result obtained in a) for Gσ(k, τ) to real times by the inverse Wick-rotation
τ → it. Give a physical interpretation for the result.

c) Calculate the Green’s function Gσ(k, iωn) in Matsubara frequency space by performing the
Fourier-transform

Gσ(k, iωn) =

∫ β

0
dτ eiωnτGσ(k, τ), (3)

where ωn = π
β (2n+ 1), n ∈ Z is a fermionic Matsubara frequency. Then continue the results

on the real frequency axis and calculate the corresponding spectral function A(k, ω).

Now, consider the opposite limit where the kinetic energy appearing in the Hamiltonian in
Eq. (1) is negligible compared to the interaction, i.e., εk=0 (atomic limit).

d) The (local) Green’s function for site i, Giσ(τ) is defined as

Giσ(τ) = −〈Tτ ĉiσ(τ)ĉ†iσ〉 = − 1

Z
Tr

[
e−βĤ ĉiσ(τ)ĉ†iσ

]
, β ≥ τ ≥ 0. (4)

Note that the different atoms are completely independent in this case and the local Green’s
function is thus the same as already calculated in Problem 6 of Excercise 3. From its Fourier
transfrom Giσ(iωn), extract the corresponding expression for the self-energy Σiσ(iωn). Is the
atomic-limit expression derivable within conventional perturbation theory?
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e) Calcualte, analogously as in d), the local magnetic (spin) χsi (τ) = 〈TτSzi (τ)Szi 〉 and density
(charge) χci (τ) = 〈Tτni(τ)ni〉 susceptibilities in the atomic limit of the Hubbard model (with
Szi = ni↑−ni↓ and ni = ni↑+ni↓), as well as their Fourier transform to Matsubara frequencies.
Then, analytically continue the expressions to real frequencies. What can you say about the
temperature dependence?

13. RPA for the Hubbard model 1+2.5+1.5+2∗=5+2∗ points

In the Hubbard model (Hamiltonian in Eq. (1)), the interaction is purely local and penalizes
double occupations: U

∑
i ni↑ni↓. Therefore, the interaction only couples electrons with opposite

spin:

Then also susceptibilities can acquire a spin-dependence: χσσ′ :

Remembering that momentum, energy and spin need to be conserved at each vertex:

a) Draw the (bubble) diagram of the free susceptibility χσσ
′

0 (q, ω) and say which spin-
combinations are possible.

b) Draw the random phase approximation (RPA) series for χ↑↑RPA and χ↑↓RPA. What can you
say about the allowed powers of U in both series? Translate the diagrams into formulas and
rewrite them using the geometric series. In all of this you can omit the labels for momentum
and frequency.

c) The charge and spin susceptibilities (the local versions of which were already introduced in
Problem 12 e) ) are given by:

χc = χ↑↑ + χ↑↓ , χs = χ↑↑ − χ↑↓.

Using the result from (b) give expressions for these susceptibilities in the RPA. Which of the
two χs was discussed in the lecture in the context of screening?

d) (Bonus points) Using the results of Problem 11 of Exercise 5, consider the electronic system
for d= 2 in presence of the Hubbard interaction U > 0, and calculate within the RPA the
two (ferromagnetic and antiferromagnetic) spin susceptibilities. On the basis of your RPA
calculations, make your final considerations about the tendency of the system towards a
given magnetic order at T = 0.
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