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10. Van Hove singularities 2+2+1+2∗=5+2∗ points

Consider the dispersion relation (single-particle energy states) for electrons on a simple hyper-
cubic lattice in d dimensions, with only nearest-neighbor hopping:

εk = −2t
d∑
i=1

cos ki, (1)

with the hopping amplitude t and the lattice constant a = 1.The density of single-particle states
in this system is then given by

N(ε) =
1

(2π)d

∫ π

−π
ddk δ (ε− εk) . (2)

In the first exercise you have calculated numerically and then plotted these densities of states
for d = 1, 2, 3. Here, the singular structures (divergences, cusps) of these functions should be
analyzed analytically.

a) Calculate N(ε) for d = 1 explicitly and determine the interval [ε1, ε2] on which N(ε) 6= 0.
Moreover, identify the values ε∗ where D diverges, i.e. where N(ε∗)=∞. From which points
k∗ in the dispersion relation originate these divergences? Show that the divergences can
be reproduced by taking into account only the contributions from these k∗-points. (Hint:
Replace εk in Eq. (2) by a corresponding Taylor-expansion around these points up to second
order.)

b) For d=2 one can show that N(ε) is essentially given by a complete elliptic integral of the
first kind. Here, however, only the singular contributions to N(ε) should be analyzed. As
in the one-dimensional case a singular contribution originates from stationary points in the
dispersion relation. Determine the kind of stationary point (i.e., maximum, minimum or
saddle point) which generates this so-called Van Hove singularity in the the two-dimensional
DOS and determine the singular contribution to N(ε) by expanding εk around corresponding
stationary point in Eq. (2) as for the one-dimensional case in a).

c) Try to predict how the singular behavior of the DOS evolves with the dimensions of the
system for d ≥ 3.

d) (Bonus points) Finally, consider the limit d → ∞. In this case, one has to rescale the
hopping amplitude as t→ t√

d
, in order to render the total energy of the system as well as

the second moment (standard deviation) of the density of state finite. Show that N∞(ε) is
proportional to a Gaußdistribution.
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11. Magnetic susceptibilities in d dimensions 1.5+1.5+1+1=5 points

Consider a system of non-interacting electrons on a (hyper)cubic lattice whose energy dispersion
is given by Eq. (1).

a) Compute the magnetic susceptibility, i.e. the Fourier transform of the spin-spin response
function 〈TτSz(ri, τ)Sz(0, 0)〉, for the frequency Ωm = 0 (static susceptibility), and for the
two momenta Q = (0, 0, 0, · · · ) (ferromagnetic susceptibility) and Q=(π, π, π, · · · ) (antifer-
romagnetic susceptibility).

b) Determine the leading divergences of the ferromagnetic and the antiferromagnetic suscep-
tibilities for T → 0 in d = 2 dimensions. To this end write the total density of states as
a sum of a singular and a regular contribution as calculated in 10 b). (Hint: Perform a
Sommerfeld-like expansion for the regular part of the DOS. For the antiferromagnetic case
consider the derivative of the susceptibility with respect to β.)

c) Discuss how the results of b) are modified in d ≥ 3 dimensions.

d) Consider now non-interacting electrons on a one-dimensional lattice with dispersion εk =
−2t cos(ka) at half-filling (µ = 0). Is there a Q-point in the Brillouin zone, Q ∈ [0, 2π], for
which εk+Q = −εk = 0? What is the signature of this “nesting” property in the free (bubble)
susceptibility χ0(Q,ω = 0) (calculated in Exercise 2, Problem 4c) at T = 0? Remember that
the sum over k,

∑
k, can be replaced by

∫
dεN (ε) with the density of states N (ε) from

Exercise 1.
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