5. Exercise on QFT for many-body systems

Sommersemester 2023

TUTORIUM: Friday, 16.06.2023.

10. Van Hove singularities

$2+2+1+2^{*}=5+2^{*}$ points
Consider the dispersion relation (single-particle energy states) for electrons on a simple hypercubic lattice in d dimensions, with only nearest-neighbor hopping:

$$
\begin{equation*}
\varepsilon_{\mathbf{k}}=-2 t \sum_{i=1}^{d} \cos k_{i} \tag{1}
\end{equation*}
$$

with the hopping amplitude t and the lattice constant $a=1$. The density of single-particle states in this system is then given by

$$
\begin{equation*}
N(\epsilon)=\frac{1}{(2 \pi)^{d}} \int_{-\pi}^{\pi} d^{d} k \delta\left(\epsilon-\varepsilon_{\mathbf{k}}\right) . \tag{2}
\end{equation*}
$$

In the first exercise you have calculated numerically and then plotted these densities of states for $d=1,2,3$. Here, the singular structures (divergences, cusps) of these functions should be analyzed analytically.
a) Calculate $N(\epsilon)$ for $\boldsymbol{d}=\mathbf{1}$ explicitly and determine the interval $\left[\epsilon_{1}, \epsilon_{2}\right]$ on which $N(\epsilon) \neq 0$. Moreover, identify the values ϵ^{*} where D diverges, i.e. where $N\left(\epsilon^{*}\right)=\infty$. From which points \mathbf{k}^{*} in the dispersion relation originate these divergences? Show that the divergences can be reproduced by taking into account only the contributions from these \mathbf{k}^{*}-points. (Hint: Replace $\varepsilon_{\mathbf{k}}$ in Eq. (2) by a corresponding Taylor-expansion around these points up to second order.)
b) For $\boldsymbol{d}=\mathbf{2}$ one can show that $N(\epsilon)$ is essentially given by a complete elliptic integral of the first kind. Here, however, only the singular contributions to $N(\epsilon)$ should be analyzed. As in the one-dimensional case a singular contribution originates from stationary points in the dispersion relation. Determine the kind of stationary point (i.e., maximum, minimum or saddle point) which generates this so-called Van Hove singularity in the the two-dimensional DOS and determine the singular contribution to $N(\epsilon)$ by expanding $\varepsilon_{\mathbf{k}}$ around corresponding stationary point in Eq. (2) as for the one-dimensional case in a).
c) Try to predict how the singular behavior of the DOS evolves with the dimensions of the system for $d \geq 3$.
d) (Bonus points) Finally, consider the limit $\boldsymbol{d} \rightarrow \infty$. In this case, one has to rescale the hopping amplitude as $t \rightarrow \frac{t}{\sqrt{d}}$, in order to render the total energy of the system as well as the second moment (standard deviation) of the density of state finite. Show that $N_{\infty}(\epsilon)$ is proportional to a Gaußdistribution.

Consider a system of non-interacting electrons on a (hyper)cubic lattice whose energy dispersion is given by Eq. (1).
a) Compute the magnetic susceptibility, i.e. the Fourier transform of the spin-spin response function $\left\langle T_{\tau} S_{z}\left(\mathbf{r}_{i}, \tau\right) S_{z}(0,0)\right\rangle$, for the frequency $\Omega_{m}=0$ (static susceptibility), and for the two momenta $\mathbf{Q}=(0,0,0, \cdots)$ (ferromagnetic susceptibility) and $\mathbf{Q}=(\pi, \pi, \pi, \cdots)$ (antiferromagnetic susceptibility).
b) Determine the leading divergences of the ferromagnetic and the antiferromagnetic susceptibilities for $T \rightarrow 0$ in $\boldsymbol{d}=\mathbf{2}$ dimensions. To this end write the total density of states as a sum of a singular and a regular contribution as calculated in $\mathbf{1 0} \mathbf{b}$).

Hints: (1) For finding the $T \rightarrow 0$ behavior in the regular parts of the DOS, one can perform a Sommerfeld-like expansion. (2) For the antiferromagnetic case it is easier to consider the derivative of the susceptibility with respect to β and from that to conclude how the susceptibility itself behaves.
c) Discuss how the results of \mathbf{b}) are modified in $d \geq 3$ dimensions.
d) Consider now non-interacting electrons on a one-dimensional lattice with dispersion $\epsilon_{k}=$ $-2 t \cos (k a)$ at half-filling $(\mu=0)$. Is there a Q-point in the Brillouin zone, $Q \in[0,2 \pi]$, for which $\epsilon_{k+Q}=-\epsilon_{k}=0$? What is the signature of this "nesting" property in the free (bubble) susceptibility $\chi_{0}(Q, \omega=0)$ (calculated in Exercise 2, Problem 4c) at $T=0$? Remember that the sum over k, \sum_{k}, can be replaced by $\int d \epsilon \mathcal{N}(\epsilon)$ with the density of states $\mathcal{N}(\epsilon)$ from Exercise 1.

