5. Exercise on QFT for many-body systems

Sommersemester 2023

<u>TUTORIUM</u>: Friday, 16.06.2023.

10. Van Hove singularities

 $2+2+1+2^*=5+2^*$ points

Consider the dispersion relation (single-particle energy states) for electrons on a simple hypercubic lattice in d dimensions, with only nearest-neighbor hopping:

$$\varepsilon_{\mathbf{k}} = -2t \sum_{i=1}^{d} \cos k_i,\tag{1}$$

with the hopping amplitude t and the lattice constant a = 1. The density of single-particle states in this system is then given by

$$N(\epsilon) = \frac{1}{(2\pi)^d} \int_{-\pi}^{\pi} d^d k \, \delta\left(\epsilon - \varepsilon_{\mathbf{k}}\right). \tag{2}$$

In the first exercise you have calculated numerically and then plotted these densities of states for d = 1, 2, 3. Here, the singular structures (divergences, cusps) of these functions should be analyzed analytically.

- a) Calculate $N(\epsilon)$ for d = 1 explicitly and determine the interval $[\epsilon_1, \epsilon_2]$ on which $N(\epsilon) \neq 0$. Moreover, identify the values ϵ^* where D diverges, i.e. where $N(\epsilon^*) = \infty$. From which points \mathbf{k}^* in the dispersion relation originate these divergences? Show that the divergences can be reproduced by taking into account only the contributions from these \mathbf{k}^* -points. (Hint: Replace $\varepsilon_{\mathbf{k}}$ in Eq. (2) by a corresponding Taylor-expansion around these points up to second order.)
- b) For d=2 one can show that $N(\epsilon)$ is essentially given by a complete elliptic integral of the first kind. Here, however, only the singular contributions to $N(\epsilon)$ should be analyzed. As in the one-dimensional case a singular contribution originates from stationary points in the dispersion relation. Determine the kind of stationary point (i.e., maximum, minimum or saddle point) which generates this so-called Van Hove singularity in the the two-dimensional DOS and determine the singular contribution to $N(\epsilon)$ by expanding $\varepsilon_{\mathbf{k}}$ around corresponding stationary point in Eq. (2) as for the one-dimensional case in **a**).
- c) Try to predict how the singular behavior of the DOS evolves with the dimensions of the system for $d \ge 3$.
- d) (Bonus points) Finally, consider the limit $d \to \infty$. In this case, one has to rescale the hopping amplitude as $t \to \frac{t}{\sqrt{d}}$, in order to render the total energy of the system as well as the second moment (standard deviation) of the density of state finite. Show that $N_{\infty}(\epsilon)$ is proportional to a Gaußdistribution.

11. Magnetic susceptibilities in d dimensions

Consider a system of non-interacting electrons on a (hyper)cubic lattice whose energy dispersion is given by Eq. (1).

- a) Compute the magnetic susceptibility, i.e. the Fourier transform of the spin-spin response function $\langle T_{\tau}S_z(\mathbf{r}_i,\tau)S_z(0,0)\rangle$, for the frequency $\Omega_m = 0$ (static susceptibility), and for the two momenta $\mathbf{Q} = (0, 0, 0, \cdots)$ (ferromagnetic susceptibility) and $\mathbf{Q} = (\pi, \pi, \pi, \cdots)$ (antiferromagnetic susceptibility).
- b) Determine the leading divergences of the ferromagnetic and the antiferromagnetic susceptibilities for $T \rightarrow 0$ in d=2 dimensions. To this end write the total density of states as a sum of a singular and a regular contribution as calculated in **10 b**).

Hints: (1) For finding the $T \rightarrow 0$ behavior in the regular parts of the DOS, one can perform a Sommerfeld-like expansion. (2) For the antiferromagnetic case it is easier to consider the derivative of the susceptibility with respect to β and from that to conclude how the susceptibility itself behaves.

- c) Discuss how the results of b) are modified in $d \ge 3$ dimensions.
- d) Consider now non-interacting electrons on a one-dimensional lattice with dispersion $\epsilon_k = -2t \cos(ka)$ at half-filling ($\mu = 0$). Is there a *Q*-point in the Brillouin zone, $Q \in [0, 2\pi]$, for which $\epsilon_{k+Q} = -\epsilon_k = 0$? What is the signature of this "nesting" property in the free (bubble) susceptibility $\chi_0(Q, \omega = 0)$ (calculated in Exercise 2, Problem 4c) at T = 0? Remember that the sum over k, \sum_k , can be replaced by $\int d\epsilon \mathcal{N}(\epsilon)$ with the density of states $\mathcal{N}(\epsilon)$ from Exercise 1.