
Exercise 05/06.05.2020

Gyration tensor of polymers
A polymer can be represented by a simple bead-spring model (see Figure 1). We1

used the standard Kremer-Grest model (see the details in Addendum 1), built
three different polymer topologies – a chain, a ring and a star polymer – and sim-
ulated them with the LAMMPS simulation package (http://lammps.sandia.gov).

Figure 1: Polymers topologies.

The exercise consists in determining some of the parameters that characterize
the shape of the different polymers: evaluate the gyration tensor and, from it,
calculate the radius of gyration Rg, the asphericity b and the prolateness S∗ (see
Addendum 2).

List of tasks to be performed:
• Read the input data. The input files are named as “topology-stiffness.dat”,

where the topology is either “chain”, “ring” or “star”, while the stiffness
parameter that determines the bending rigidity of the polymer is 0, 5, 10, 20
or 50. Be aware that, the chain and ring polymers are composed by N =
100 monomers, while the star polymer is composed of f =50 arms, each
consisting of n = 100 monomers, attached to a central monomer, thus
resulting into N = fn + 1 = 2501 monomers in total. Also be aware that
for each topology-stiffness combination a set of 100 independent polymer
configurations is provided (the input file includes all of them, one after the
other).

1credits to Dr. Emanuele Locatelli, Univ. Ass. at the University of Vienna
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• Calculate the gyration tensor S

• Diagonalize the S matrix with the QR-algorithm and store the three eigen-
values

• Diagonalize the S matrix with a publicly available routine. You can try
with the DGEEV routine of LAPACK or, for python users, numpy.linalg.eig.
Compare the three eigenvalues with the ones obtained by your home-made
diagonalization.

• Determine Rg, b and S∗ and plot them as a function of the stiffness param-
eter. Check that

1. on increasing the stiffness parameter κ, Rg increases within the range
Rg/σ ε [5, 25]; at κ = 0, the star polymer has the largest Rg, while
the Rgs of the chain and the ring polymers, initially relatively close to
each other, become quite different on increasing the stiffness, as the
ring has a more compact topology with respect to the chain

2. the asphericity of the star polymer is around zero, while b/R2
g ε [0, 1]

for the chain and the ring polymers
3. the prolateness of the star polymer is around zero, while S∗ ε [−0.2, 1.5]

for the chain and the ring polymers; note that the chain becomes more
and more prolate on increasing the stiffness, while the ring becomes
eventually oblate.

• Perform a check on Rg by independently calculating it from the monomers
positions.

Addendum 1
A bead-spring polymer consists of a sequence of beads (representing the monomers)
whose specific interactions depend on the model chosen. When employing the
Kremer-Grest model, the mutual interactions between all beads are given by the
Weeks-Chandler-Anderson (WCA) potential
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while bonded (consecutive) beads interact through the finite-extensible-non-linear
spring (FENE) potential given by
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where ε is the characteristic energy of a bond, usually set equal to the thermal
energy ε = kBT = 1 (where kB is the Boltzmann constant), σ = 1 is the diameter
of the beads usually set equal to one, R0 is the maximum extent of a bond (set
equal to R0 = 1.5 σ), and K is the spring constant (set equal to K = 30 ε/σ2).
Polymers of different bending rigidities can be obtained by adding a bending
interaction defined by

UBEND(θ) = κ(1− cos θ) (3)
where θ denotes the angle between subsequent bonds and κ is the stiffness pa-
rameter.
We simulated the Langevin dynamics of the different polymer topologies – a
chain, a ring and star polymer – using the LAMMPS simulation package, for
different bending rigidities, namely κ = 0, 5, 10, 20 and 50ε.

Addendum 2
Remember that the gyration tensor is defined by

S = 1
N

N∑
i=1

(rji − rjcm)(rki − rkcm) for j, k = 1, 2, 3 (4)

where rj,ki are the j, k-th Cartesian coordinates of the i-th monomer and rj,kcm are
the j, k-th Cartesian coordinates of the center of mass of the polymer.
By properly diagonalizing the matrix S, we obtain

S =


λx 0 0
0 λy 0
0 0 λz


where λx ≤ λy ≤ λz.
We define the radius of gyration Rg as

〈R2
g〉 = 〈I1〉

the asphericity b as
〈b〉 =

〈
λz −

1
2(λx + λy)

〉

and the prolateness S∗ as

〈S∗〉 =
〈(3λx − I1)(3λy − I1)(3λz − I1)

I3
1

〉

where I1 = λx + λy + λz.
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The radius of gyration can also calculated from the monomers positions as follows

〈R2
g〉 =

〈 1
N

N∑
i=1
|~ri − ~rcm|2

〉
(5)

where ~ri is the position of the i-th monomer and ~rcm is the position of the center
of mass of the polymer.
Note that all averages above are computed over all the independent configurations
given.

Instructions
During the exercise a short protocol must be made and saved as PROTOKOLL.txt
in the directory of the respective exercise day. The protocol is a simple ASCII
text file that is created with a text editor with which you can also write your
programs. The protocol must contain the following

1. Date, exercise number, group number, name(s) of the participating stu-
dents

2. Time required for the tasks (approximately)

3. Name of the created files, the files must be located in the directory of the
respective exercise day

4. The answers to any questions asked above

5. Possible problems or peculiarities, if they have occurred.
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