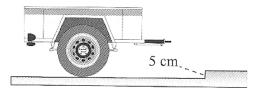
Kernbeispiele Schwingungen 2013

1. Ungedämpfte freie Schwingung

Eine Masse m=0,01kg schwingt ungedämpft an einer Feder. Die Schwingungsdauer ist T=0.1 s. Die maximale Geschwindigkeit ist v_{max}=20 m/s.

Wie groß ist die Amplitude?


Wie groß ist die Federkonstante?

Wir groß ist die in der Schwingung enthaltene Energie?

Stellen Sie die Auslenkung als Funktion der Zeit dar. Zum Zeitpunkt t=0 liegt gerade die maximale Geschwindigkeit in negative Richtung vor. Wie groß ist die Phase φ , wenn die Schwingung mittels der Formel $y(t) = A\sin(\omega t + \varphi)$ dargestellt wird?

2. Gedämpfte freie Schwingung

Ein Anhänger wird als gedämpftes schwingendes System (=ein sogenannter harmonischer Oszillator) angesehen mit zwei Federn und zwei Stoßdämpfern. Die Federn haben die Gesamtfederkonstante $D=6.10^4$ N/m. Die Stoßdämpfer repräsentieren eine Dämpfungskonstante k. Die Federn, Stoßdämpfer und Räder werden masselos angenommen. Die Gesamtmasse des Anhängers inklusive Zuladung ist m=400 kg.

- a) Wie stark werden die beiden Federn bei stehendem Anhänger eingedrückt?
- b) Bei der Fahrt über eine schlechte Straße, springt der Anhänger über eine 5 cm hohe Stufe. Die Abklingkonstante beträgt $\delta = 5 \ s^{-1}$. Mit welcher Frequenz schwingt das Fahrzeug nach Überfahren der Stufe auf und ab?
- c) Wie lange dauert es, bis die Schwingungsamplitude auf 10% des Anfangswertes abgefallen ist?
- d) Wie groß müsste die Masse des Anhängers inklusive Zuladung sein, damit er mit den gegebenen Federn und Stoßdämpfern kritisch gedämpft wäre?

3. Erzwungene gedämpfte Schwingung

Ein Rüttelgerät wird als gedämpfter Federschwinger in Resonanz (f_{Resonanz} =20 Hz) betrieben. Es benötigt zur Kompensation der Dämpfung eine Leistung von 880 W. Die schwingende Masse beträgt 100 kg. Beim Abstellen der Maschine klingt die Amplitude in 1,2 s auf den halben Wert ab.

- a) Welche Amplitude stellt sich im Betriebszustand ein?
- b) Welche maximale Beschleunigung erreicht die geschüttelte Masse? (das ist z.B. beim Mischen von Substanzen verschiedener Dichte wichtig.)