Furthermore, perform the summations over all spin states and the polarizations, with which you get

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}}=\frac{1}{3} \sum_{s, \lambda}|\mathcal{M}|^{2}=\frac{g^{4} m_{W}^{2}}{3\left[(p+q)^{2}-m_{W}^{2}\right]^{2}}\left\{(p \cdot q)+\frac{2(p \cdot k)(q \cdot k)}{m_{W}^{2}}\right\} \tag{34}
\end{equation*}
$$

For the calculation of the decay width use the convention

$$
\begin{equation*}
(k-p)^{2}=t, \quad(k-q)^{2}=u, \quad(k-l)^{2}=s, \tag{35}
\end{equation*}
$$

and the formula for the three-particle phase space,

$$
\begin{equation*}
\mathrm{dLips}=\frac{1}{128 \pi^{3} m_{W}^{2}} \int d s d t \tag{36}
\end{equation*}
$$

Consider the kinematic limits of the integration variables based on the results of example 15 (WS) and give the result for the differential width $\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} d t}$. Furthermore make the assumption $m_{H} \ll m_{W}$ (we know, experimentally $m_{H}>m_{W}$) and show that in this approximation the result for $\mathrm{d} \Gamma / \mathrm{d} s$ is

$$
\begin{equation*}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} s}=\frac{g^{4}}{768 \pi^{3} m_{W}}\left(-\frac{1}{12}+\frac{s}{12 m_{W}^{2}}+\frac{s}{s-m_{W}^{2}}\right) . \tag{37}
\end{equation*}
$$

14. We have the reaction $e^{-}+\nu_{\mu} \rightarrow e^{-}+\nu_{\mu}$.

Extract the necessary Feynman rules for the vertices from the Lagrangian density

$$
\begin{equation*}
\mathcal{L}_{N C}=\frac{g}{\cos \theta_{W}} J_{\mu}^{N C} Z^{\mu} \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\mu}^{N C}=\frac{1}{2}\left[g_{L}^{f} \bar{f} \gamma_{\mu}\left(1-\gamma_{5}\right) f+g_{R}^{f} \bar{f} \gamma_{\mu}\left(1+\gamma_{5}\right) f\right] \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
g_{L}^{f} & =T_{3}\left(f_{L}\right)-Q\left(f_{L}\right) \sin ^{2} \theta_{W}, \tag{40}\\
g_{R}^{f} & =T_{3}\left(f_{R}\right)-Q\left(f_{R}\right) \sin ^{2} \theta_{W} . \tag{41}
\end{align*}
$$

The Feynman rule for the Z-propagator in the unitary gauge can be found in the lecture. Calculate the matrix element, which is
$\mathcal{M}=\frac{i g^{2}}{4 \cos ^{2} \theta_{W}} \frac{g_{L}^{\nu}}{q^{2}-m_{Z}^{2}} \bar{u}\left(k^{\prime}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) u(k)\left(\bar{u}\left(p^{\prime}\right) \gamma^{\mu}\left(g_{L}^{e}\left(1-\gamma_{5}\right)+g_{R}^{e}\left(1+\gamma_{5}\right)\right) u(p)\right)$.
Further calculate the cross section $d \sigma / d \cos \theta_{C M S}$ of this reaction. The result is

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta_{C M S}}\left(e^{-} \nu_{\mu} \rightarrow e^{-} \nu_{\mu}\right)=\frac{g^{4}}{128 \pi \cos ^{4} \theta_{W}} \frac{\left(g_{R}^{e}\right)^{2} s^{2}+\left(g_{L}^{e}\right)^{2} u^{2}}{s\left(t-m_{Z}^{2}\right)^{2}}, \tag{43}
\end{equation*}
$$

with the Mandelstam variables $s=(p+k)^{2}, t=\left(k-k^{\prime}\right)^{2}$, and $u=\left(k-p^{\prime}\right)^{2}$. What is tis result for the reaction $e^{-}+\bar{\nu}_{\mu} \rightarrow e^{-}+\bar{\nu}_{\mu}$?
15. Calculate the differential cross section of the reaction $e^{+}+e^{-} \rightarrow b+\bar{b}$ at the Z^{0} pole, i.e. the four-momentum transmitted to Z^{0} is $|q| \sim m_{Z^{0}}$. The mass of the bottom quark is not neglected. Take the Feynman rules from the lecture notes. First show that the matrix element \mathcal{M} has the form

$$
\begin{equation*}
\mathcal{M}=\frac{i g^{2}}{4 \cos ^{2} \theta_{W}} \frac{1}{q^{2}-m_{Z}^{2}} \bar{v}\left(p_{2}\right) \gamma_{\mu}\left(v_{e}+a_{e} \gamma_{5}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) \gamma^{\mu}\left(v_{b}+a_{b} \gamma_{5}\right) v\left(p_{4}\right), \tag{44}
\end{equation*}
$$

and the result has the form

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}=\frac{1}{16 \pi s} \frac{g^{4}}{\left(s-m_{Z}^{2}\right)^{2}}\left[2 A m_{b}^{2} s+(B+C)\left(s+t-m_{b}^{2}\right)^{2}+(B-C)\left(m_{b}^{2}-t\right)^{2}\right] \tag{45}
\end{equation*}
$$

with the factors $A=\frac{1}{16 \cos ^{4} \theta_{W}}\left(v_{b}^{2}-a_{b}^{2}\right)\left(v_{e}^{2}+a_{e}^{2}\right), B=\frac{1}{16 \cos ^{4} \theta_{W}}\left(v_{b}^{2}+a_{b}^{2}\right)\left(v_{e}^{2}+a_{e}^{2}\right)$ and $C=\frac{1}{4 \cos ^{4} \theta_{W}} v_{b} a_{b} v_{e} a_{e}$. The Mandelstam variable s is the square of the momentum of the exchanged Z boson and t is the square of the difference of the momenta of the incoming electron and outgoing b quark. Sketch also how to obtain the total cross section.

