16. Given is the reaction $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$. This reaction can be mediated via the electromagnetic and the weak force carrier γ and Z^{0}.

First calculate $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$, where. $\cos \theta$ is the angle between incoming e^{-}and outgoing μ^{-} in the CMS. The masses of electron and muon are neglected and the corresponding Feynman rules can be found in the lecture notes.

Then calculate the function

$$
\begin{equation*}
A_{F B}=\frac{\int_{0}^{1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta-\int_{-1}^{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta}{\int_{0}^{1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta+\int_{-1}^{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta} . \tag{46}
\end{equation*}
$$

$A_{F B}$ is the abbreviation for "Asymmetry-Forward-Backwards". Verify that

$$
\begin{equation*}
A_{F B}\left(\sqrt{s}=m_{Z}\right)=3\left(1-4 \sin ^{2} \theta_{W}\right)^{2} . \tag{47}
\end{equation*}
$$

This measurement leads to a very accurate determination of the Weinberg angle. In order to be able to evaluate $A_{F B}$ also directly at the Z-pole, (47), we include the finite
Z-width $\Gamma_{Z}\left(\leq m_{Z}\right)$ in the denominator of the Z-propagator, $s-m_{Z}^{2} \rightarrow s-m_{Z}^{2}+$ $i m_{Z} \Gamma_{Z}$.

