43. Working in dimensional regularisation as regularisation scheme in D-dimensions, in every closed loop with a four-particle vertex there occurs the so-called one-point function A_{0}, with e.g. the matrix element $\mathcal{M}=i \lambda A_{0}(m)$, depicted by the Feynman graph

It is defined as

$$
\begin{equation*}
A_{0}(m)=\frac{(2 \pi \mu)^{4-D}}{i \pi^{2}} \int d^{D} k \frac{1}{k^{2}-m^{2}+i \epsilon} . \tag{57}
\end{equation*}
$$

Using the Wick rotation $k^{0} \rightarrow i k_{E}^{0}$ the integration path in the complex k^{0} plane will be rotated by $\pi / 2$ in order to get Euklidian coordinates. Use the BogolubovSchwinger parametrisation

$$
\begin{equation*}
\frac{1}{A}=\int_{0}^{\infty} d x e^{-x A} \quad A>0 \tag{58}
\end{equation*}
$$

Show that the intermediate result has the form

$$
\begin{equation*}
\frac{i}{16 \pi^{2}} A_{0}(m)=-i \frac{\mu^{4-D}}{(2 \pi)^{D}} \int_{0}^{\infty} d \alpha e^{-\alpha m^{2}} \int d^{D} k_{E} e^{-\alpha k_{E}^{2}} . \tag{59}
\end{equation*}
$$

For the integration over the D-dimensional momentum space work with spherical coordinates. For that step these formulas are helpful:

$$
\begin{equation*}
\int d \Omega_{D}=\frac{2 \pi^{D / 2}}{\Gamma(D / 2)} \quad \text { and } \quad \int_{0}^{\infty} d x x^{a} e^{-b x^{2}}=\frac{\Gamma\left(\frac{a+1}{2}\right)}{2 b^{\frac{a+1}{2}}} \quad b>0, \quad a \in N_{u} \tag{60}
\end{equation*}
$$

The remaining parameter integral is partially integrated (the exponent of α becomes $1-D / 2$). By using

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{a} e^{-b x}=\Gamma(a+1) b^{-a-1} \tag{61}
\end{equation*}
$$

and also $\epsilon=4-D$ verify the result

$$
\begin{equation*}
\frac{i}{16 \pi^{2}} A_{0}(m)=\frac{2 i m^{2}}{(4 \pi)^{2}} \frac{\Gamma\left(\frac{\epsilon}{2}\right)}{2-\epsilon} e^{\frac{\epsilon}{2}\left(\ln 4 \pi+\ln \frac{\mu^{2}}{m^{2}}\right)} . \tag{62}
\end{equation*}
$$

Perform an expension in $\epsilon,\left(\Gamma\left(\frac{\epsilon}{2}\right)=\frac{2}{\epsilon}-\gamma+\mathcal{O}(\epsilon)\right)^{1}$ and show that the final result is

$$
\begin{equation*}
A_{0}(m)=m^{2}\left(\frac{2}{\epsilon}-\gamma+1+\ln 4 \pi+\ln \frac{\mu^{2}}{m^{2}}\right)+\mathcal{O}(\epsilon) . \tag{63}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1} \gamma=0.5772157 \ldots$ Euler-Mascheroni constant

