
43. Working in dimensional regularisation as regularisation scheme in D-dimensions, in
every closed loop with a four-particle vertex there occurs the so-called one-point
function A0, with e.g. the matrix element M = i�A0(m), depicted by the Feynman
graph
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Using the Wick rotation k0
! ik0

E the integration path in the complex k0 plane
will be rotated by ⇡/2 in order to get Euklidian coordinates. Use the Bogolubov-
Schwinger parametrisation
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Show that the intermediate result has the form
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For the integration over the D-dimensional momentum space work with spherical
coordinates. For that step these formulas are helpful:
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The remaining parameter integral is partially integrated (the exponent of ↵ becomes
1�D/2). By using Z 1

0

dx xa e�bx = � (a+ 1) b�a�1 (61)

and also ✏ = 4�D verify the result
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Perform an expension in ✏, (�
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✏ ��+O (✏))1 and show that the final result is
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1� = 0.5772157 . . . Euler-Mascheroni constant
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