Statistische Methoden der Datenanalyse Beispielsammlung

Übung 5

W. Waltenberger, R. Frühwirth

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A-1050 Wien, Nikolsdorfer Gasse 18

Wintersemester 2017/2018

Übung 5

Beispiel 5.1

Der Messfehler eines Geräts zur Entfernungsmessung wird als normalverteilt mit Mittel 0 und Standardabweichung σ angenommen. Wie groß darf σ maximal sein, damit der Messwert mit 99% Sicherheit um höchstens 1 mm vom wahren Wert abweicht?

Beispiel 5.2

Eine Messreihe (x_1, \ldots, x_n) vom Umfang n = 250 stammt aus einer Normalverteilung mit Mittel μ und Varianz σ^2 . Das Stichprobenmittel ist gleich $\bar{x} = 81.2$, die Stichprobenvarianz ist gleich $S^2 = 4.73$.

- a) Berechnen Sie den ML-Schätzer von μ und seine Standardabweichung.
- b) Berechnen Sie den ML-Schätzer von σ^2 und seine Standardabweichung.
- c) Geben Sie ein 95%-iges Konfidenzintervall für den unbekannten Mittelwert μ an.
- d) Geben Sie ein 95%-iges Konfidenzintervall für die unbekannte Varianz σ^2 an.

Beispiel 5.3

Es sei $X \sim \text{Norm}(\mu, \sigma^2)$. Die Verteilung von $Y = e^X$ heißt Lognormalverteilung.

- a) Bestimmen Sie die Dichte der Verteilung.
- b) Berechnen Sie Mittelwert, Varianz, Median und Modus der Dichte.
- c) Zeigen Sie, dass das Produkt von zwei lognormalverteilten Zufallsgrößen wieder lognormalverteilt ist.

Beispiel 5.4

Konstruieren Sie eine Mischung von zwei bivariaten Normalverteilungen mit der Eigenschaft, dass die beiden Komponenten unkorreliert, aber nicht unabhängig sind.

Beispiel 5.5

Eine Umfrage unter 1000 Personen ergibt die folgenden Präferenzen für die Parteien A, B, C, D:

$$n_A = 115, n_B = 362, n_C = 238, n_D = 285$$

Schätzen Sie die Wähleranteile p_A, p_B, p_C, p_D der vier Parteien in der Grundgesamtheit unter der Annahme, dass die Stichprobe repräsentativ ist, und geben Sie näherungsweise die gemeinsame Kovarianzmatrix und die Korrelationsmatrix der Schätzwerte an.

Beispiel 5.6 (Prog)

Simulieren Sie N=5000 Stichproben vom Umfang n=400 aus der bivariaten Normalverteilung mit

$$\boldsymbol{\mu} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} 0.8 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}.$$

Schätzen Sie μ , V und den Korrelationskoeffizienten ρ mit der ML-Methode und analysieren Sie die empirische Verteilung der Schätzwerte (Mittelwert, Standardabweichung, Histogramm).