Complexity Theory

VU 181.142, SS 2014

Homework Assignment 3

Name:	N.N.
Matr-Nr:	XXXXXXX
Begin:	6 May, 2014
Submission Deadline:	20 May, 2014
send to:	complexity@dbai.tuwien.ac.at
Maximum credits:	10

Exercise 1 (5 credits) Recall the following characterizations of the complexity classes $\Sigma_i \mathsf{P}$ and $\Pi_i \mathsf{P}$ for $i \ge 1$.

Theorem.

• Let L be a language and $i \ge 1$. Then $L \in \Sigma_i \mathsf{P}$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x, y) \in R\}$ is in $\Pi_{i-1} \mathsf{P}$ and

 $L = \{x \mid there \ exists \ a \ y \ with \ |y| \le |x|^k \ s.t. \ (x,y) \in R\}$

• Let L be a language and $i \ge 1$. Then $L \in \Pi_i \mathsf{P}$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x, y) \in R\}$ is in $\Sigma_{i-1} \mathsf{P}$ and

$$L = \{x \mid for \ all \ y \ with \ |y| \le |x|^k, (x, y) \in R\}$$

Corollary.

• Let L be a language and $i \ge 1$. Then $L \in \Sigma_i \mathsf{P}$ iff there is a polynomially balanced, polynomial-time decidable (i + 1)-ary relation R such that

 $L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Qy_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$

where Q is \forall if i is even and \exists if i is odd.

• Let L be a language and $i \ge 1$. Then $L \in \Pi_i \mathsf{P}$ iff there is a polynomially balanced, polynomial-time decidable (i + 1)-ary relation R such that

$$L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \cdots Qy_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$$

where Q is \exists if i is even and \forall if i is odd.

Give a rigorous proof of this corollary. It suffices to prove the correctness of the characterization of $\Sigma_i P$. The characterization of $\Pi_i P$ follows immediately.

Hint. Use the above theorem and proceed by induction on *i*.

Exercise 2 (5 credits) Recall the Σ_2 P-hardness proof of **MINIMAL MODEL SAT** by reduction from the QSAT₂-problem: Let an arbitrary instance of QSAT_i be given by the QBF

$$\psi = (\exists x_1, \dots, x_k) (\forall y_1, \dots, y_\ell) \varphi$$

Now let $\{x'_1, \ldots, x'_k, z\}$ be fresh propositional variables. Then we construct an instance of **MINIMAL MODEL SAT** by the *variable z* and the *formula*

$$\chi = \left(\bigwedge_{i=1}^{n} (\neg x_i \leftrightarrow x'_i)\right) \land (\neg \varphi \lor (y_1 \land \ldots \land y_\ell \land z))$$

Recall from the lecture that we have already proved the following implication:

 ψ is **true** (in every interpretation) $\Rightarrow z$ is **true** in a minimal model of χ .

Give a rigorous proof also of the opposite direction, i.e.:

z is **true** in a minimal model of $\chi \Rightarrow \psi$ is **true** (in every interpretation).

Hint. Let \mathcal{J} be a minimal model of χ and let z be **true** in \mathcal{J} .

- First show that then $\mathcal{J}(y_j) = \mathbf{true}$ for every j.
- Second, let \mathcal{I} be the truth assignment obtained by restricting \mathcal{J} to the variables $\{x_1, \ldots, x_k\}$. Show that (by the minimality of \mathcal{J}) \mathcal{I} is indeed a partial assignment on $\{x_1, \ldots, x_k\}$ s.t. for any values assigned to $\{y_1, \ldots, y_\ell\}$, the formula φ is **true**.