Complexity Theory

VU 181.142, SS 2014
Homework Assignment 4

Name:	N.N.
Matr-Nr:	xxxxxxx
Begin:	13 May, 2014
Submission Deadline:	27 May, 2014
send to:	complexity@dbai.tuwien.ac.at
Maximum credits:	10

Exercise 1 (5 credits) Recall the definition of the following variants of the SAT-problem: LEX-MINIMAL MODEL SAT and WEIGHT-MINIMAL MODEL SAT.

Give a log-space problem reduction from the LEX-MINIMAL MODEL SAT problem to WEIGHT-MINIMAL MODEL SAT and prove the correctness of your reduction.

Hint. Choose the weights in such a way that, for every i, the weight of the variable x_{i} exceeds the total weight of $\left\{x_{i+1}, \ldots, x_{n}\right\}$.

Exercise 2 (5 credits) Recall the definition of the following variants of the SAT-problem: CARD-MINIMAL MODEL SAT and CARD-MAXIMAL MODEL SAT.
Give a log-space problem reduction from the CARD-MINIMAL MODEL SAT problem to CARD-MAXIMAL MODEL SAT and prove the correctness of your reduction.

Hint. Let (φ, z) denote an instance of the CARD-MINIMAL MODEL SAT problem and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ denote the variables occurring in φ. Add additional variables $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ and $X^{\prime \prime}=\left\{x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right\}$ and transform φ into ψ, s.t. the models of ψ are obtained from the models of φ by leaving the truth value of the variables x_{i} unchanged and by enforcing that the truth value of x_{i}^{\prime} and $x_{i}^{\prime \prime}$ coincides with the truth value of $\neg x_{i}$.

