Complexity Theory

VU 181.142, SS 2014

Homework Assignment 5

N.N.
XXXXXXX
27 May, 2014
10 June, 2014
complexity@dbai.tuwien.ac.at
10

Exercise 1 (5 credits) Recall the Σ_2 P-hardness proof of the Abduction Solvability problem by reduction from QSAT₂: Let an arbitrary instance of the QSAT₂ problem be given by the formula $\varphi = (\exists X)(\forall Y)\psi(X,Y)$ with $X = \{x_1, \ldots, x_k\}$ and $Y = \{y_1, \ldots, y_l\}$. Moreover, let $X' = \{x'_1, \ldots, x'_k\}$, $R = \{r_1, \ldots, r_k\}$, and t be fresh variables. Then we define an instance of Solvability as $\mathcal{P} = \langle V, H, M, T \rangle$ with

$$V = X \cup Y \cup X' \cup R \cup \{t\}$$

$$H = X \cup X'$$

$$M = R \cup \{t\}$$

$$T = \{\psi(X, Y) \rightarrow t\} \cup \{\neg x_i \lor \neg x'_i, x_i \rightarrow r_i, x'_i \rightarrow r_i \mid 1 \le i \le k\}$$

Give a rigorous correctness proof of this problem reduction, i.e., $\varphi \equiv \mathbf{true} \Leftrightarrow Sol(\mathcal{P}) \neq \emptyset$.

Hint. As usual, prove both directions of the equivalence separately. It is convenient to use the notation from the lecture: For $A \subseteq X$, let A' denote the set $\{x' \mid x \in A\}$.

For the " \Rightarrow "-direction, you start off with a partial assignment I on X. Let $I^{-1}(\mathbf{true}) = A$. Then it can be shown that $S = A \cup (X \setminus A)'$ is a solution of \mathcal{P} . In order to show that S is indeed a solution, you must prove carefully the two conditions that (1) $T \cup S$ is satisfiable and (2) $T \cup S \models M$.

For the " \Leftarrow "-direction, first show that a solution S of \mathcal{P} contains exactly one of $\{x_i, x'_i\}$. This is due to the clauses $\{\neg x_i \lor \neg x'_i, x_i \to r_i, x'_i \to r_i\}$ in T. Hence, S must be of the form $S = A \cup (X \setminus A)'$ for some $A \subseteq X$. It remains to show that for the assignment I on X with $I^{-1}(\mathbf{true}) = A$, every extension J of I to the variables Y satisfies the formula $\psi(X, Y)$.

Exercise 2 (5 credits) Recall the Σ_2 P-hardness proof of the Abduction Relevance problem by reduction from the Solvability problem: Let an arbitrary instance of the Solvability problem be given by the PAP $\mathcal{P} = \langle V, H, M, T \rangle$. W.l.o.g., let *T* consist of a single formula

 φ and let h, h', m' be fresh variables. Then we define an instance of the Relevance (resp. the Necessity) problem with the following PAP $\mathcal{P}' = \langle V', H', M', T' \rangle$:

$$V' = V \cup \{h, h', m'\}$$

$$H' = H \cup \{h, h'\}$$

$$M' = M \cup \{m'\}$$

$$T' = \{\neg h \lor \varphi\} \cup \{h' \to m \mid m \in M\} \cup \{\neg h \lor \neg h', h \to m', h' \to m'\}$$

This reduction fulfills the following equivalences:

 \mathcal{P} has at least one solution iff h is relevant in \mathcal{P}' iff h' is not necessary in \mathcal{P}' .

Give a rigorous proof of these equivalences.

Hints.

• Show both directions of the first equivalence separately:

For the " \Rightarrow "-direction, you start off with a solution S of \mathcal{P} and construct a solution S' of \mathcal{P}' with $h \in S'$. Prove carefully that S' is indeed a solution of \mathcal{P}' , i.e. (1) $T' \cup S'$ is satisfiable and (2) $T' \cup S' \models M'$.

For the " \Leftarrow "-direction, you start off with a solution S' of \mathcal{P}' , s.t. $h \in S'$ and construct a solution S of \mathcal{P} . Prove carefully that S is indeed a solution of \mathcal{P} , i.e. (1) $T \cup S$ is satisfiable and (2) $T \cup S \models M$.

• The second equivalence follows easily from the clauses $\{\neg h \lor \neg h', h \to m', h' \to m'\}$ in T', i.e., every solution of \mathcal{P}' contains exactly one of $\{h, h'\}$.