Complexity Theory

VU 181.142, SS 2014

Homework Assignment 5

```
Name:
Matr-Nr:
N.N.
xxxxxxx
Begin:
Submission Deadline:
27 May, 2014
10 June, 2014
send to:
complexity@dbai.tuwien.ac.at
Maximum credits: }1
```

Exercise 1 (5 credits) Recall the Σ_{2} P-hardness proof of the Abduction Solvability problem by reduction from QSAT $_{2}$: Let an arbitrary instance of the QSAT $_{2}$ problem be given by the formula $\varphi=(\exists X)(\forall Y) \psi(X, Y)$ with $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{l}\right\}$. Moreover, let $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}, R=\left\{r_{1}, \ldots, r_{k}\right\}$, and t be fresh variables. Then we define an instance of Solvability as $\mathcal{P}=\langle V, H, M, T\rangle$ with

$$
\begin{aligned}
V & =X \cup Y \cup X^{\prime} \cup R \cup\{t\} \\
H & =X \cup X^{\prime} \\
M & =R \cup\{t\} \\
T & =\{\psi(X, Y) \rightarrow t\} \cup\left\{\neg x_{i} \vee \neg x_{i}^{\prime}, x_{i} \rightarrow r_{i}, x_{i}^{\prime} \rightarrow r_{i} \mid 1 \leq i \leq k\right\}
\end{aligned}
$$

Give a rigorous correctness proof of this problem reduction, i.e., $\varphi \equiv \operatorname{true} \Leftrightarrow \operatorname{Sol}(\mathcal{P}) \neq \emptyset$.
Hint. As usual, prove both directions of the equivalence separately. It is convenient to use the notation from the lecture: For $A \subseteq X$, let A^{\prime} denote the set $\left\{x^{\prime} \mid x \in A\right\}$.

For the " \Rightarrow "-direction, you start off with a partial assignment I on X. Let $I^{-1}($ true $)=$ A. Then it can be shown that $S=A \cup(X \backslash A)^{\prime}$ is a solution of \mathcal{P}. In order to show that S is indeed a solution, you must prove carefully the two conditions that (1) $T \cup S$ is satisfiable and (2) $T \cup S \models M$.

For the " \Leftarrow "-direction, first show that a solution S of \mathcal{P} contains exactly one of $\left\{x_{i}, x_{i}^{\prime}\right\}$. This is due to the clauses $\left\{\neg x_{i} \vee \neg x_{i}^{\prime}, x_{i} \rightarrow r_{i}, x_{i}^{\prime} \rightarrow r_{i}\right\}$ in T. Hence, S must be of the form $S=A \cup(X \backslash A)^{\prime}$ for some $A \subseteq X$. It remains to show that for the assignment I on X with $I^{-1}($ true $)=A$, every extension J of I to the variables Y satisfies the formula $\psi(X, Y)$.

Exercise 2 (5 credits) Recall the $\Sigma_{2} \mathrm{P}$-hardness proof of the Abduction Relevance problem by reduction from the Solvability problem: Let an arbitrary instance of the Solvability problem be given by the $\operatorname{PAP} \mathcal{P}=\langle V, H, M, T\rangle$. W.l.o.g., let T consist of a single formula
φ and let $h, h^{\prime}, m^{\prime}$ be fresh variables. Then we define an instance of the Relevance (resp. the Necessity) problem with the following PAP $\mathcal{P}^{\prime}=\left\langle V^{\prime}, H^{\prime}, M^{\prime}, T^{\prime}\right\rangle$:

$$
\begin{aligned}
V^{\prime} & =V \cup\left\{h, h^{\prime}, m^{\prime}\right\} \\
H^{\prime} & =H \cup\left\{h, h^{\prime}\right\} \\
M^{\prime} & =M \cup\left\{m^{\prime}\right\} \\
T^{\prime} & =\{\neg h \vee \varphi\} \cup\left\{h^{\prime} \rightarrow m \mid m \in M\right\} \cup\left\{\neg h \vee \neg h^{\prime}, h \rightarrow m^{\prime}, h^{\prime} \rightarrow m^{\prime}\right\}
\end{aligned}
$$

This reduction fulfills the following equivalences:
\mathcal{P} has at least one solution iff h is relevant in \mathcal{P}^{\prime} iff h^{\prime} is not necessary in \mathcal{P}^{\prime}.
Give a rigorous proof of these equivalences.

Hints.

- Show both directions of the first equivalence separately:

For the " \Rightarrow "-direction, you start off with a solution S of \mathcal{P} and construct a solution S^{\prime} of \mathcal{P}^{\prime} with $h \in S^{\prime}$. Prove carefully that S^{\prime} is indeed a solution of \mathcal{P}^{\prime}, i.e. (1) $T^{\prime} \cup S^{\prime}$ is satisfiable and (2) $T^{\prime} \cup S^{\prime} \models M^{\prime}$.
For the " \Leftarrow "-direction, you start off with a solution S^{\prime} of \mathcal{P}^{\prime}, s.t. $h \in S^{\prime}$ and construct a solution S of \mathcal{P}. Prove carefully that S is indeed a solution of \mathcal{P}, i.e. (1) $T \cup S$ is satisfiable and (2) $T \cup S \models M$.

- The second equivalence follows easily from the clauses $\left\{\neg h \vee \neg h^{\prime}, h \rightarrow m^{\prime}, h^{\prime} \rightarrow m^{\prime}\right\}$ in T^{\prime}, i.e., every solution of \mathcal{P}^{\prime} contains exactly one of $\left\{h, h^{\prime}\right\}$.

