Complexity Theory

VU 181.142, SS 2015

Homework Assignment 2

```
Name:
Matr-Nr:
Begin:
Submission Deadline:
send to:
Maximum credits:
```

N.N.
xxxxxxx
24 March, 2015
21 April, 2015
complexity@dbai.tuwien.ac.at
10

Exercise 1 (5 credits) Recall the problem reduction from an arbitrary language $L \in$ NP to the SAT-problem given in the lecture. In particular, recall the construction of an instance $R(x)$ of SAT from an arbitrary instance x of L. Give a rigorous proof of the correctness of this reduction, i.e. $x \in L \Leftrightarrow R(x) \in \mathbf{S A T}$.

Hint. Prove both directions of the equivalence separately. The intended meaning of the propositional atoms in $R(x)$ is clear. You have to be careful, what is given, what is constructed (or defined), and what has to be proved.

- Suppose that $x \in L$.
- given: Then we know that there exists a successful computation of the NTM T on input x. By our assumption, this computation consists of exactly N steps. Let $\operatorname{conf}_{0}, \ldots, \operatorname{conf}_{N}$ denote the configurations of the NTM T along this computation.
- constructed/defined: We define a truth assignment \mathcal{I} appropriate to $R(x)$ according to the intended meaning of the propositional atoms in $R(x)$.
- to be proved: It remains to show that all conjuncts in $R(x)$ are indeed satisfied by \mathcal{I}. For this purpose, you have to inspect all groups of conjuncts in $R(x)$ and argue that each of them is true in \mathcal{I}.
- Suppose that $R(x) \in$ SAT.
- given: Then there exists a satisfying truth assignment \mathcal{I} of $R(x)$.
- constructed/defined: We can construct a sequence $\operatorname{conf} f_{0}, \ldots, \operatorname{con} f_{N}$ of configurations of the NTM T according to the intended meaning of the propositional atoms in $R(x)$.
- to be proved: First argue that the configurations $\operatorname{conf} f_{0}, \ldots, \operatorname{con} f_{N}$ are welldefined (by using the the fact that \mathcal{I} satisfies all conjuncts of $R(x)$).
It remains to show that there exists a computation of T on input x which produces exactly this sequence of configurations $\operatorname{conf} f_{0}, \ldots, \operatorname{conf}_{N}$. Note that,
in particular, this is a successful computation by the conjunct state $e_{s_{m}}[N]$ (with $s_{m}=$ "yes") in $R(x)$ and by the intended meaning of state $s_{m}[N]$. For this purpose, you have to show by induction on τ that there exists a computation of T on input x whose first τ configurations are $\operatorname{conf}_{0}, \ldots, \operatorname{conf}_{\tau}$.

For your convenience. The groups of conjuncts in $R(x)$ are recalled below.

1. Initialization facts.

```
symbol \([0,0]\)
symbol \(_{\sigma}[0, \pi] \quad\) for \(1 \leq \pi \leq|x|\), where \(x_{\pi}=\sigma\)
symbol \(_{\sqcup}[0, \pi] \quad\) for \(|x|<\pi \leq N\)
cursor \([0,0]\)
state \(_{s_{0}}[0]\)
```

2. Transition rules. For each pair (s, σ) of state s and symbol σ let $\left\langle s, \sigma, s_{1}^{\prime}, \sigma_{1}^{\prime}, d_{1}\right\rangle$, $\ldots,\left\langle s, \sigma, s_{k}^{\prime}, \sigma_{k}^{\prime}, d_{k}\right\rangle$ denote all possible transitions according to the transition relation Δ (for the cursor movements, we write $d_{i} \in\{-1,0,1\}$ rather than $d_{i} \in\{\leftarrow,-, \rightarrow\}$).
Then $R(x)$ contains the following conjuncts for each value of τ and π such that $0 \leq \tau<N$ and $0 \leq \pi<N$
```
state \(_{S}[\tau] \wedge\) symbol \(_{\sigma}[\tau, \pi] \wedge\) cursor \([\tau, \pi] \rightarrow\)
    \(\left[\left(\right.\right.\) state \(_{s_{1}^{\prime}}[\tau+1] \wedge\) symbol \(_{\sigma_{1}^{\prime}}[\tau+1, \pi] \wedge\) cursor \(\left.\left[\tau+1, \pi+d_{1}\right]\right) \vee \ldots \vee\)
    \(\left(\right.\) state \(_{s_{k}^{\prime}}[\tau+1] \wedge \operatorname{symbol}_{\sigma_{k}^{\prime}}[\tau+1, \pi] \wedge\) cursor \(\left.\left.\left[\tau+1, \pi+d_{k}\right]\right)\right]\)
```

3. Uniqueness constraints. Let $K=\left\{s_{0}, \ldots, s_{m}\right\}$ and $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$.

Then $R(x)$ contains the following formulae for each value of τ and π such that $0 \leq \tau \leq N$, $0 \leq \pi \leq N, 0 \leq i \leq m$, and $1 \leq j \leq n$.

```
state \(_{s_{i}}[\tau] \leftrightarrow\left(\neg\right.\) state \(_{s_{0}}[\tau] \wedge \ldots \wedge \neg\) state \(_{s_{i-1}}[\tau] \wedge\)
    \(\wedge \neg\) state \(_{s_{i+1}}[\tau] \wedge \ldots \wedge \neg\) state \(\left._{s_{m}}[\tau]\right)\)
cursor \([\tau, \pi] \leftrightarrow(\neg\) cursor \([\tau, 0] \wedge \ldots \wedge \neg\) cursor \([\tau, \pi-1] \wedge\)
    \(\wedge \neg\) cursor \([\tau, \pi+1] \wedge \ldots \wedge \neg\) cursor \([\tau, N]\)
symbol \(_{\sigma_{j}}[\tau, \pi] \leftrightarrow\left(\neg\right.\) symbol \(_{\sigma_{1}}[\tau, \pi] \wedge \ldots \wedge \neg\) symbol \(_{\sigma_{j-1}}[\tau, \pi] \wedge\)
    \(\wedge \neg\) symbol \(_{\sigma_{j+1}}[\tau, \pi] \wedge \ldots \wedge \neg\) symbol \(_{\sigma_{n}}[\tau, \pi]\)
```

4. Inertia rules. $R(x)$ contains the following conjuncts for each value τ, π, π^{\prime}, σ, where $0 \leq \tau<N, 0 \leq \pi<\pi^{\prime} \leq N$, and $\sigma \in \Sigma$,
symbol $_{\sigma}[\tau, \pi]$, cursor $\left[\tau, \pi^{\prime}\right] \rightarrow$ symbol $_{\sigma}[\tau+1, \pi]$
symbol $_{\sigma}\left[\tau, \pi^{\prime}\right]$, cursor $[\tau, \pi] \rightarrow$ symbol $_{\sigma}\left[\tau+1, \pi^{\prime}\right]$
5. Acceptance. Let $s_{m}=$ "yes".

Then $R(x)$ contains the following atom as a conjunct:
state $_{s_{m}}[N]$.

Exercise 2 (5 credits) Recall the basic, polynomial-time decision procedure for HORNSAT (see cc04.pdf). The correctness of this decision procedure relies on the following lemma:

Lemma. Let φ be a propositional Horn-formula. Let Y denote the set of atoms which are obtained by initializing Y to the set of facts in φ and by exhaustively applying the rules in φ to Y. Then, for every atom x in φ, the following equivalence holds: $x \in Y \Leftrightarrow x$ is implied by the facts and rules in φ.

Give a rigorous proof of this lemma.

Terminology. We say that a formula β is implied by a formula α, if $\models(\alpha \rightarrow \beta)$ holds, i.e., every model of α is a model of β. In the above lemma, let ψ denote the conjunction consisting of the rules and facts (but not the goals) in φ. The lemma thus claims that $x \in Y \Leftrightarrow \models(\psi \rightarrow x)$ holds.

