UE Logik für Wissensrepräsentation

Aufgabenblatt 3: Inkonsistentes Wissen

Beispiel 1:

Betrachte folgende Theorie $T = \{p \lor s, \neg r \lor \neg q, s \lor \neg p \lor \neg r, \neg p \lor (q \supset r), p \land q\}$ und bestimme in Bezug auf theorie-basiertes parakonsistentes Schließen:

- (a) die freie Basis $\bigcap_{S \in MC(T)} S$ von T;
- (b) ob $T \models_{MC} (p \land r) \supset s$ bzw. $T \models_{MC} q \lor r$ gilt;
- (c) alle parakonsistenten Konsequenzen aus T.

Beispiel 2:

Beweise die Äquivalenz zwischen theorie-basiertem parakonsistentem Schließens mittels maximal konsistenter Teilmengen und jenem mittels minimal inkonsistenter Teilmengen, d.h. folgende Eigenschaft:

Sei T eine aussagenlogische Theorie und A eine Formel.

Dann gilt:
$$T \models_{MI} A \iff T \models_{MC} A$$
.

Beispiel 3:

Zeige die Deduktionseigenschaft für die in der VO vorgestellte 3-wertige Logik L_3 .

Beispiel 4:

Betrachte die Theorie aus Beispiel 1 und bestimme in Bezug auf logik-basiertes parakonsistentes Schließen:

- (a) alle \leq_P -minimalen 3-wertigen Modelle von T;
- (b) ob $T \models_P (p \land r) \supset s$ bzw. $T \models_P q \lor r$ gilt;
- (c) alle Formeln $A \in T$, sodass $V^m(A) = 1$ unter allen \leq_P -minimalen 3-wertigen Modellen von T.

Beispiel 5:

Gegeben die Wissensbasis $W=Th(\{p\vee s, \neg r\vee \neg q, s\vee \neg p\vee \neg r, \neg p\vee (q\supset r)\})$ und die Formel $A=p\wedge q$, ermittle:

- (a) $\mu(m, A)$ für jedes Modell m von W, also seine minimalen Distanzen zu Modellen von A;
- (b) $\delta(W, A)$, also die global minimalen Distanzen von Modellen von W zu Modellen von A;
- (c) die Modelle der Revision nach Winslett Mod(W + wA);
- (d) die Modelle der Revision nach Satoh $Mod(W +_s A)$.

Beispiel 6:

Sei W ein Belief Set, A eine Formel und \dotplus eine Revisionsfunktion, welche die AGM Postulate erfüllt. Zeige folgende Eigenschaften:

- (a) Wenn $A \in W$ dann gilt $((W + \neg A) \cap W) + A = W$.
- (b) Wenn $A \notin W$ dann gilt $(W + \neg A) \cap W = W$.

Beispiel 7:

Ermittle für die Wissensbasis W und die Formel A aus Beispiel 5:

- (a) alle BC-Extensionen von (W, A);
- (b) ob unter Choice Revision $(p \land r) \supset s \in (W \dot{+} A)$ bzw. $q \lor r \in (W \dot{+} A)$ gilt;
- (c) ob unter Skeptical Revision $(p \land r) \supset s \in (W \dotplus A)$ bzw. $q \lor r \in (W \dotplus A)$ gilt.

Beispiel 8:

Beweise, dass Skeptical Revision über BC-Extensionen das AGM Postulat (7) erfüllt.