Formal Methods in Computer Science SS 2016: Optional Exercise Sheet (Proof Structure)

This exercise sheet provides some training material for the optional tutorial. Some of the exercises and solutions have been taken from Wohlgemuth's book.
1.) Translate each of the following statements into a first-order formula using \in as the only predicate symbol:
(a) If $A \subseteq B$, then A and $C \backslash B$ are disjoint.
(b) A is not a subset of B.
(c) $\neg(A \cup B \subseteq C \backslash D)$.
2.) Eliminate def^{2} from the proof fragment below.

1. $\quad a \in M$
2. $M \subseteq N$
3. $\quad a \in N \quad\left(1,2 ; \operatorname{def}^{2} \subseteq\right)$
3.) Let A and B be sets. Define $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$ and $\bar{B}=\{x \in U \mid x \notin B\}$, where U is the universal set. Prove $(A \backslash B)=(A \cap \bar{B})$ in the following two steps.
(a) Show: $(A \backslash B) \subseteq(A \cap \bar{B})$.
(b) Show: $(A \cap \bar{B}) \subseteq(A \backslash B)$.
4.) Show: \forall sets $A \forall$ sets $B:((A \backslash B) \cup B)=(A \cup B)$. Contrary to the examples in the lecture, handle the forall statements on the object level and not on the meta level.
5.) Show: $\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}$ holds for sets A_{1}, \ldots, A_{n}.
6.) Assume that A, B, and C are sets. Show: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
7.) For sets A, B, and C :
(a) Show: $A \subseteq B \quad$ iff
$A \cap B=A$.
(b) Show: $A \subseteq B \quad$ iff $\quad A \cup B=B$.
8.) Given sets A_{k} (for $k=1,2,3,4$), define

$$
\begin{array}{ll}
B_{1}=A_{1} & B_{2}=A_{2} \backslash A_{1} \\
B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right) & B_{4}=A_{4} \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right) .
\end{array}
$$

(a) Prove: $\bigcup_{i=1}^{4} B_{i}=\bigcup_{i=1}^{4} A_{i}$
(b) Prove: For all $1 \leq i, j \leq 4, i \neq j: B_{i} \cap B_{j}=\emptyset$
9.) Let $f: A \mapsto B$. Suppose $X \subseteq A, Y \subseteq B$, and $y \in B$. Define:

P1 $f(X)=\{b \in B \mid b=f(x)$ for some $x \in X\}$
P2 $f^{-1}(Y)=\{a \in A \mid f(a) \in Y\}$
P3 $f^{-1}(y)=\{a \in A \mid f(a)=y\}$
Let $C \subseteq B$, and $D \subseteq B$. Show: $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$. First structure the proof in the same way as we disussed in the lecture. Then present the proof in English.
10.) Prove or refute the following:

Let $f: A \mapsto B, E \subseteq A, F \subseteq A$. Then $f(E \cap F)=f(E) \cap f(F)$.
11.) A function $f: A \mapsto B$ is called one-to-one provided that for all $a_{1}, a_{2} \in A$: if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.
Let $f: \mathbb{R} \mapsto \mathbb{R}$ be defined by $f(x)=2 x+4$ for all $x \in \mathbb{R}$. Prove that f is one-to-one.
12.) A function $f: A \mapsto B$ is called onto if for each $b \in B$ there exists some $a \in A$ such that $f(a)=b$.
Show that there exists a one-to-one function $g: \mathbb{N} \mapsto \mathbb{N}$ which is not onto.
13.) A sequence is a function $a: \mathbb{N} \mapsto \mathbb{R} . a(n)$ is called the nth term of the sequence and is denoted by a_{n}. The sequence itself is denoted by $\left\langle a_{1}, a_{2}, \ldots\right\rangle$ or by $\left\langle a_{n}\right\rangle$. A number $L \in \mathbb{R}$ is defined to be the limit of $\left\langle a_{n}\right\rangle$, written $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=L$, provided that, given a real number $\epsilon>0$, there exists a natural number N such that for all $n>N:\left|a_{n}-L\right|<\epsilon$. If L is the limit of $\left\langle a_{n}\right\rangle$, then $\left\langle a_{n}\right\rangle$ converges to L. A sequence with no limit is said to diverge.
Show that $\left\langle a_{n}\right\rangle$ defined by $a_{n}=n /(n+1)$ has limit 1 .
14.) Let $\left\langle a_{n}\right\rangle$ be a sequence. If $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=L$ and $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=M$, then $L=M$. That is, if a sequence has a limit, then it is unique.
Hint: $|x-z| \leq|x-y|+|y-z|$ for all $x, y, z \in \mathbb{R}$.

