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How can we prove the following statements?

Summation formulas like
∑

n
i=0 2i = 2n+1 for all n ∈ N0

Inequalities like 2n < n! for each integer n ≥ 4

Divisibility results like n3 − n is divisible by 3 for each n ∈ N

Results about sets like any set of n ∈ N elements has 2n

subsets

Correctness or termination results about algorithms like
The function fac(n) returns n! for all n ∈ N0
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Induction Principles

A central proof techniques in mathematics and computer
science:

Induction principles

Formalized as an axiom schema like

[

P(1) ∧ ∀k ∈ N (P(k) → P(k + 1))
]

→ ∀n ∈ NP(n)

Different kinds of induction

Mathematical induction (and its variants)

Strong mathematical induction

Structural induction (e.g., for inductively defined data types)

Noetherian (or well-founded) induction

Details and examples are presented later.
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Principle of mathematical induction

Let P(n) be a statement involving a variable n. Suppose

1. P(1) is true;

2. if P(k) is true for some natural numbers k ≥ 1, then
P(k + 1) is also true.

Then P(n) is true for all natural numbers n = 1, 2, . . .

In the base case, we prove that P(1) is true.

We are allowed to assume that P(k) is true for some k ≥ 1.
This is the induction hypothesis.

We prove P(k + 1) true in the induction step. In the course
of this proof, we (usually) apply the induction hypothesis.
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Principle of mathematical induction
An example proof using mathematical induction

Theorem: The sum of the first n positive odd integers is n2.

Proof. We want to prove that, for all natural numbers n, P(n)
holds, where P(n) denotes

∑

n−1
i=0 (2i + 1) = n2. The proof is by

mathematical induction on n.

Base case. We show that P(1) is true. This is the case since

n−1
∑

i=0

(2i + 1) = 1 = n2 .

Induction hypothesis. Assume P(k) is true for some k ≥ 1.

Induction step. We want to show that P(k + 1) is true. Therefore,
we need to show that

∑

k
i=0(2i + 1) = (k + 1)2 holds.
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Principle of mathematical induction
An example proof using mathematical induction (cont’d)

By the induction hypothesis, P(k) is true. Then we derive

P(k) is true iff
k−1
∑

i=0

(2i + 1) = k2 iff

2k + 1 +
k−1
∑

i=0

(2i + 1) = k2 + 2k + 1 iff

k
∑

i=0

(2i + 1) = (k + 1)2 .

Hence, P(k + 1) is true. �
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Principle of mathematical induction
A correctness and termination proof by mathematical induction

Algorithm 1: The power function pow(b, n) : N × N0 7→ N

Input: b, n: a positive and a non-negative integer
Output: The computed positive integer value for b, n

1 if n == 0 then return 1 ;
2 else return b × pow(b, n − 1) ;

We prove the correctness of pow(·, ·).

Proof. We want to prove that, for all natural numbers n (including
0), P(n) holds, where P(n) denotes the statement that for any
positive integer b and the non-negative integer n, pow(b, n)
computes bn. The proof is by mathematical induction on n.
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Principle of mathematical induction
A correctness and termination proof by mathematical induction (cont’d)

Base case. We show that P(0) is true. This is the case since
pow(b, 0) terminates in line 1 and returns the correct value b0 = 1
for any natural number b.

Induction hypothesis. Assume P(k) is true for some integer k ≥ 0.

Induction step. We want to show that P(k + 1) is true. Consider
pow(b, k + 1) and observe that k + 1 > 0. Therefore, line 2 is
reached and b × pow(b, k) is computed. From the induction
hypothesis, we know that pow(b, k) computes bk for any positive
integer b and therefore pow(b, k + 1) computes the correct values
b × bk = bk+1. Hence, P(k + 1) is true. �

Remark: We started the induction from 0. What do we have to change

in order to use exactly the mathematical induction schema from above?
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Principle of mathematical induction: Variation 1

Let P(n) be a statement involving a variable n. Suppose

1. P(k0) is true for some natural number k0;

2. if P(k) is true for some natural numbers k ≥ k0, then
P(k + 1) is also true.

Then P(n) is true for all natural numbers n = k0, k0 + 1, . . .

Useful, e.g., to prove that 2n > n2 for all natural numbers n ≥ 5.

Remark: Variation 1 can be translated to standard mathematical
induction by Q(r − k0 + 1) = P(r), where k0 ≤ r .
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Principle of mathematical induction: Variation 1

Prove: 2n > n2 for all natural numbers n ≥ 5.

Proof. Let P(n) denote the statement 2n > n2. The proof is by
mathematical induction on n starting with n0 = 5.

Base case: n0 = 5. P(n0) is true because 25 = 32 > 25 = 52.

Induction hypothesis. Assume P(n) is true for some n ≥ n0.

Induction step. We want to show that P(n + 1) is true. By the
induction hypothesis, P(n) is true. Then we derive

2n > n2 iff

2 · 2n > 2 · n2 iff

2n+1 > 2 · n2 .

Since n ≥ 5, 2 · n2 > (n + 1)2 holds. Then 2n+1 > (n + 1)2 follows
by the transitivity of >. Hence, P(n + 1) is true. �
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Principle of mathematical induction: Variation 2
Its principle and a short example

Let P(n) be a statement involving a variable n. Suppose

1. P(1) and P(2) are true;

2. if P(k) and P(k + 1) are true for some natural numbers k,
then P(k + 2) is also true.

Then P(n) is true for all natural numbers n = 1, 2, . . .

Further generalizations are possible: Use more than two levels,
start with some n > 1, etc.

Useful, e.g., to prove the following:
Let {an} be a sequence of natural numbers such that a1 = 5,
a2 = 13 and an+2 = 5an+1 − 6an for all natural numbers n. Show
that an = 2n + 3n holds for all natural numbers n.

12 / 30



Principle of mathematical induction: Variation 2
A proof for the example

Proof. We want to prove that, for all natural numbers n, P(n)
holds, where P(n) denotes an = 2n + 3n. The proof is by
mathematical induction on n.

Base cases. P(1) is true, because a1 = 5 = 21 + 31. Moreover,
P(2) is true, because a2 = 13 = 22 + 32.

Induction hypothesis. Assume P(k) and P(k + 1) are true for
some k ≥ 1.

Induction step. We want to show that P(k + 2) is true.
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Principle of mathematical induction: Variation 2
A proof for the example (cont’d)

From the induction hypothesis, we have ak = 2k + 3k and
ak+1 = 2k+1 + 3k+1. We compute

ak+2 = 5 · ak+1 − 6 · ak

= 5 · 2k+1 + 5 · 3k+1 − 6 · 2k − 6 · 3k

= 5 · 2k+1 + 5 · 3k+1 − 3 · 2k+1 − 2 · 3k+1

= 2 · 2k+1 + 3 · 3k+1

= 2k+2 + 3k+2

Hence, P(k + 2) is true. �
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Principle of strong (mathematical) induction

Let P(n) be a statement involving a variable n. Suppose

1. P(1) is true;

2. if, for some natural numbers k, P(1), P(2), . . . , P(k) are all
true, then P(k + 1) is also true.

Then P(n) is true for all natural numbers n = 1, 2, . . .

The induction hypothesis is stronger (compared to above).
NB: Stronger means potentially less models

Find examples where strong induction can be beneficially applied!
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Principle of structural induction

In order to show that a statement holds for all elements of a recur-
sively defined set, use the following:

Base case(s). Prove that the statement holds for all elements spec-
ified in the base case(s) of the set definition.

Induction step. Prove that if the statement is true for each of the
elements used to construct elements in the inductive step of the set
definition, then the result holds for these new elements.

➥ The structure of a structural induction proof “follows” the
structure of the underlying definition.
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Principle of structural induction
The basic definitions for the list example

Consider the following definition of lists

lst ::= nil | (c : lst)

where : means LISP cons and nil denotes the empty list.

Example

A list with three elements 1, 2, 3 looks as follows:

(1 : (2 : (3 : nil)))
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Principle of structural induction
Appending two lists

We want to implement an append (app) function recursively:

app(nil , y) = y (1)

app((c : x), y) = (c : app(x , y)) (2)

Example

We want to append (a : (b : nil)) and (c : nil)

app((a : (b : nil)), (c : nil)) =(2) (a : app((b : nil), (c : nil)))

=(2) (a : (b : app(nil , (c : nil))))

=(1) (a : (b : (c : nil)))
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Principle of structural induction
Proving properties about app

Let P(x) denote app(x , nil) = x .

Show that, for all lists ℓ, P(ℓ) holds.

Proof: We proceed by structural induction on the definition of lists.

Basis case: ℓ = nil . Then P(ℓ) is app(nil , nil) = nil which follows
immediately from the first defining equality (1).

Induction hypothesis. Assume that P(ℓ) holds for some list ℓ.
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Principle of structural induction
Proving properties about app (cont’d)

Induction step. We have to establish P((c : ℓ)). The induction
hypothesis gives us

app(ℓ, nil) = ℓ.

We concatenate c to the left on both sides resulting in

(c : app(ℓ, nil)) = (c : ℓ).

By the second defining equality (2), we get

app((c : ℓ), nil) = (c : ℓ).

Hence, P((c : ℓ)) holds.
Consequently, P(ℓ) is true for all lists.

How can we use mathematical induction to prove the above result?
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Noetherian1 (or well-founded) induction
Partially ordered sets

Definition (Partially ordered sets (posets))

A partial order is a binary relation ≤ over a set S which is

1. reflexive: a ≤ a holds ∀a ∈ S;

2. antisymmetric: a ≤ b ∧ b ≤ a → a = b holds ∀a, b ∈ S; and

3. transitive: a ≤ b ∧ b ≤ c → a ≤ c holds ∀a, b, c ∈ S.

(S, ≤) (or often simply S) is called a partially ordered set.

Examples: (X, ≤) for X ∈ {N,Z,Q,R}

Fact: If (S, ≤S) is a poset, T ⊆ S, and ≤T is the restriction of ≤S

to T × T , then (T , ≤T ) is also a poset.

A poset is totally ordered if every pair of elements are comparable.

1Named after Emmy Noether (1882–1935), an influential female German
mathematician.
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Noetherian (or well-founded) induction
Lexicographic orders

Definition (Lexicographic order)

Let (S, ≤) be a poset. The lexicographic order ⊑ on S × S is given
by

(s, t) ⊑ (s ′, t ′) iff

{

s < s ′,

s = s ′ and t ≤ t ′

for all s, s ′, t, t ′ in S.

Fact: If (S, ≤) is a poset, then (S × S, ⊑) is a poset.

22 / 30



Noetherian (or well-founded) induction
Well-founded sets

Definition (Well-founded sets)

(S, ≤) is well-founded iff every non-empty subset of S contains at
least one minimal element with respect to the order relation ≤. An
element x ∈ S is called minimal if there is no element y ∈ S such
that y < x .

Examples: (N, ≤) is well-founded, but (Z, ≤) is not

Fact: Let (S, ≤) be a poset. If (S, ≤) is well-founded, then the
lexicographically ordered set (S × S, ⊑) is also well-founded.
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Noetherian1 (or well-founded) induction
The principle

Let (S, ≤) be a well-founded set and let P(x) be a statement in-
volving a variable x . Suppose

1. P(m) is true for all minimal elements of S;

2. for each non-minimal element x , if P(y) is true for all y < x ,
then P(x) is also true.

Then P(x) is true for all x ∈ S.

The schema is as follows:

∀x ∈ S
[

∀y ∈ S
(

y < x → P(y)
)

→ P(x)
]

→ ∀z ∈ S P(z)
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The Ackermann function
Definition of the function

Algorithm 2: Ackermann function A(x , y) : N0 × N0 7→ N0

Input: x , y , two non-negative integers
Output: The computed non-negative integer value for x , y

1 if x == 0 then

2 return y + 1;

3 else if y == 0 then

4 return A(x − 1, 1);

5 else return A(x − 1, A(x , y − 1));

This function is well known for its extraordinary growth.
[Link to Wikipedia article on Ackermann function]

Try it out by hand or implement it.

Does the function terminate for all admissible inputs x and y

and does it return a non-negative integer?
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The Ackermann function
The termination proof

We know: (N0 × N0, ⊑) is well-founded with least element (0, 0).
Let P(x , y) denote the statement

“A(x , y) terminates on inputs (x , y) ∈ N0 × N0 and returns a
non-negative integer value”.

The proof is by Noetherian induction on ⊑.

Base case: The least element is (0, 0). Then P(0, 0) is true
because A(0, 0) = 1 (line 2).

Induction hypothesis. Pick arbitrarily a non-minimal element (x , y)
and assume that P(x ′, y ′) is true for all (x ′, y ′) ⊏ (x , y).

Induction step. We want to show that P(x , y) is true. Recall that
x ≥ 0 and y ≥ 0. We distinguish the following three cases.
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The Ackermann function
The termination proof (cont’d)

Case 1: x = 0. Then A(0, y) = y + 1 (line 2) and P(0, y) is true.

Case 2: x 6= 0 ∧ y = 0. Then (x − 1, 1) ⊏ (x , 0). By the induction
hypothesis, P(x − 1, 1) is true and A(x , 0) = A(x − 1, 1) (line 4).
Therefore, P(x , 0) is true.

Case 3: x 6= 0 ∧ y 6= 0. Then (x , y − 1) ⊏ (x , y) and, for all
z ∈ N0, (x − 1, z) ⊏ (x , y). Then, P(x , y − 1) is true by the
induction hypothesis. Moreover, for all z ∈ N0, P(x − 1, z) is also
true by the induction hypothesis. A(x , y) = A(x − 1, A(x , y − 1))
(line 5) therefore terminates and computes a non-negative integer
value. Hence, P(x , y) is true.

We conclude that P(x , y) is true for all (x , y) ∈ N0 × N0. �

27 / 30



Induction principles not covered in this tutorial

Reverse induction [link]

Backward induction [link]

Cauchy induction [link]
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How to write down an induction proof?

Identify the claim you are going to prove.

Let the reader know which kind of induction you will use.

For structural induction, a claim is about all elements of some
inductively defined set. It is a good idea to indicate the
inductive definition on which the proof is based.

Make clear (e.g., by labels) what the basis, the induction
hypothesis and the induction step are.

State precisely the induction hypothesis you are going to use
and indicate the claim you prove in the induction step.

Make clear where you apply the induction hypothesis.

Check whether I followed the advise! Report violations!
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Learning objectives

Ability to discuss different induction principles in detail and to
distinguish between them.

Ability to apply these principles and to construct proofs by
induction.
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