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Observation

Many students have problems to prove simple statements

Possible reasons:

Skill was present but has been forgotten during the years

Skill has never been achieved (for various reasons)

➥ Goal: Learn it (again)

G1 We convey the idea of what is “an acceptable proof”

G2 We try to improve your ability to perform proofs

Disclaimer
This is not a full-fledged review course (“repetitorium”) in math!
We concentrate on proof strategies and especially on practical
aspects like how to get the structure of proofs right.
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Resources

The slides are based on the following book:

A. Wohlgemuth:
Introduction to Proof in Abstract Mathematics. Dover 2011.

I detected too late the text

Deductive Mathematics—an introduction to proof and
discovery for mathematics education

of the same author. It can be downloaded at

http://andrew-wohlgemuth.com/DMmathed.pdf

Two other books are:

R. Hammack. Book of Proof. It can be downloaded [here]

D. J. Velleman. How to prove it. Cambridge University Press 2006
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What is a Proof?

Simple Proof Techniques

Proof Techniques
Proving and Using Forall Statements
Proving and Using Or Statements
Proving and Using And Statements
Using Theorems
Proving and Using Implications
Handling iff Statements
Proofs by Contradiction
Handling Existential Statements

Learning Objectives
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Formal vs informal proofs
Formal proofs

Formal proofs [link to Formal Proof, link to Proof Theory]

Often developed in an interactive theorem prover
(like HOL or Isabelle)

Presented in a calculus like higher-order type theory

Such proofs can be checked by a machine

More info in the special issue on formal proofs of:
Notices of the American Mathematical Society 55(11), 2008 [link]
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http://en.wikipedia.org/wiki/Formal_proof
http://en.wikipedia.org/wiki/Proof_theory
http://en.wikipedia.org/wiki/HOL_(proof_assistant)
http://en.wikipedia.org/wiki/Isabelle_theorem_prover
http://www.ams.org/notices/200811/


Formal vs informal proofs
Formal proofs

One possibility for a calculus: Natural deduction (ND)

First I wished to construct a formalism that comes
as close as possible to actual reasoning. Thus
arose a "calculus of natural deduction".

Gerhard Gentzen (1934)

We will use inferences of ND (or combinations thereof) later
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Formal vs informal proofs
Informal proofs

Informal proofs

They have to contain enough detail to be reproducible

They can be translated into a formal proof by introducing the
rules (of the underlying calculus) after an addition of missing
“obvious” details

The level of details in a proof depends on the audience!

Warning: “An informal proof in the mathematics literature, by
contrast, requires weeks of peer review to be checked, and
may still contain errors.”
[Link to widely believed results which were later wrong]
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http://mathoverflow.net/questions/35468/widely-accepted-mathematical-results-that-were-later-shown-wrong


Statements

Statement: a mathematical expression which is either true or false

Examples: 2 ∈ {x ∈ R | x < 5} (true) or 32 + 52 = 82 (false)

Expressions of the form 0 < x < 1 are used to define a set

A = {x ∈ R | 0 < x < 1}

Important: The truth value of the open expression 0 < x < 1

depends on the chosen x , e.g., true for x = 1
2 and false for x = 5

Important: The domain
For N, 0 < x < 1 is unsatisfiable, for R, it is satisfiable
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Formal mathematical proofs

A formal mathematical proof consists of a numbered sequence
of true statements

Each statement in a proof is an assumption or . . .

. . . it follows from previous statements by a rule of inference

The last statement is the one we have proved

➥ Open expressions cannot occur in proofs

Example of an inference rule: The set definition rule

If an element is in a set, we may infer that it satisfies the defining
property. Conversely, if it satisfies the defining property, then we
may infer that it is in the set.
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The set definition rule: An example

Define C = {x ∈ R | x < 2} (x < 2 ∧ x ∈ R is the defining property)

Two possibilities for a derivation:

Possibility 1 Possibility 2
1. a ∈ C

2. a < 2 ∧ a ∈ R (1; def C)
1. b < 2 ∧ b ∈ R

2. b ∈ C (1; def C)

Each statement in a proof has a number

We justify how we derive a statement, e.g., (1; def C) means
we derive the current statement from statement 1 with the
definition of C and the definition rule

Remark: ∧ b ∈ R is often omitted when it is clear from the context
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Macro-steps in proofs

Problem: Consider the following proof attempt:
(ass means assumption and prop means property)

Assume: 1. X = {x ∈ R | x < 1}
2. a ∈ X

Show: a < 2

1. a ∈ X (ass 2)
2. a < 1 (1, ass 1; def X )
3. 1 < 2 (prop R)
4. a < 2 (2, 3; prop R)

Is this an acceptable proof?

Acceptance of macro-steps like “prop R” depends on the audience!
Which properties of R have been employed?
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Simple proof techniques
Proof by example

Example

Prove that there is a prime number between 80 and 90.

Idea
Just give a witness for the prime number (say p) in the statement
(i.e., present p for which the statement holds)

Proof: Choose p = 83.

Is this sufficient?
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Simple proof techniques
Proof by example

Example

Prove that there is a prime number between 80 and 90.

Idea
Just give a witness for the prime number (say p) in the statement
(i.e., present p for which the statement holds)

Proof: Choose p = 83.

Is this sufficient?

Strictly speaking, NO. We have to show that 83 is indeed prime.

This can be done by checking all possible divisors exhaustively.
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Simple proof techniques
Proof by exhaustive enumeration

Example

Prove that p = 83 is a prime number.

Idea
Check all possible divisors q of p.

If we are informed then we know that it is sufficient to check all
natural numbers q for which q ≤ ⌈√

p⌉ holds.

NB: Such a statement could require a proof or at least a reference to one.

Proof: Let p = 83.

We check and obtain that 2, 3, 4, 5, 6, 7, 8, 9, 10 do not divide 83.
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Simple proof techniques
Disproving conjectures

Conjecture

Suppose n is an integer larger than 1 and n is prime. Then 2n − 1
is prime.

Can you prove the conjecture? Try hard . . .

If you can’t, you should think to disprove it. A single n, which is
prime, but 2n − 1 is not, is sufficient to disprove the conjecture!

The counterexample is n = 11 because 11 is prime, but

211 − 1 = 2047 = 23 · 89

is not!
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Proving ∀ statements
Inference rule for defined relations

The definition rule
Suppose some relationship has been defined. If the relationship
holds (in some proof step or some assumption), then the defining
condition may be inferred. Conversely, if the defining condition
holds, then the relationship may be inferred.

Example

For sets A and B, A is a subset of B, A ⊆ B, provided that for all
x such that (s.t.) x ∈ A : x ∈ B. In other word:

A ⊆ B if and only if (iff) ∀x
(

(x ∈ A) → (x ∈ B)
)

is valid

Possibility 1:

1. A ⊆ B
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Proving ∀ statements
Inference rule for defined relations

The definition rule
Suppose some relationship has been defined. If the relationship
holds (in some proof step or some assumption), then the defining
condition may be inferred. Conversely, if the defining condition
holds, then the relationship may be inferred.

Example

For sets A and B, A is a subset of B, A ⊆ B, provided that for all
x such that (s.t.) x ∈ A : x ∈ B. In other word:

A ⊆ B if and only if (iff) ∀x
(

(x ∈ A) → (x ∈ B)
)

is valid

Possibility 1:

1. A ⊆ B

2. for all x s.t. x ∈ A : x ∈ B (1; def ⊆)
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Proving ∀ statements
Inference rule for defined relations

The definition rule
Suppose some relationship has been defined. If the relationship
holds (in some proof step or some assumption), then the defining
condition may be inferred. Conversely, if the defining condition
holds, then the relationship may be inferred.

Example

For sets A and B, A is a subset of B, A ⊆ B, provided that for all
x such that (s.t.) x ∈ A : x ∈ B. In other word:

A ⊆ B if and only if (iff) ∀x
(

(x ∈ A) → (x ∈ B)
)

is valid

Possibility 2:

1. for all x s.t. x ∈ A : x ∈ B
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Proving ∀ statements
Inference rule for defined relations

The definition rule
Suppose some relationship has been defined. If the relationship
holds (in some proof step or some assumption), then the defining
condition may be inferred. Conversely, if the defining condition
holds, then the relationship may be inferred.

Example

For sets A and B, A is a subset of B, A ⊆ B, provided that for all
x such that (s.t.) x ∈ A : x ∈ B. In other word:

A ⊆ B if and only if (iff) ∀x
(

(x ∈ A) → (x ∈ B)
)

is valid

Possibility 2:

1. for all x s.t. x ∈ A : x ∈ B

2. A ⊆ B (1; def ⊆)
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Proving ∀ statements
Inference rule for ∀

Let P(x) denote an expression (with the only free variable x)

Example: P(x) denotes x ∈ A and Q(x) denotes x ∈ B

Then “for all x s.t. x ∈ A : x ∈ B” can be denoted as “for all
x s.t. P(x) : Q(x)”

The rule for proving ∀ statements (pr ∀)

In order to prove a statement of the form “for all x s.t.
P(x) : Q(x)”, assume that x is an arbitrarily chosen element
(eigenvariable) s.t. P(x) is true. Then establish that Q(x) is true.

Generalizations like “for all x , y s.t. P(x , y) : Q(x , y)” possible
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Proving ∀ statements
Inference rule for ∀: An example

Let C = {x ∈ R | x < 1} and D = {x ∈ R | x < 2}. Show C ⊆ D!

Assume: 1. C = {x ∈ R | x < 1}
2. D = {x ∈ R | x < 2}

Show: C ⊆ D

1. Let x ∈ C be arbitrary
2 x < 1 (1, ass 1; def C)
3. x < 2 (2; prop R)
4. x ∈ D (3; def D)
5. for all x ∈ C : x ∈ D (1 − 4; pr ∀)
6. C ⊆ D (5; def ⊆)

How can we disprove “for all x s.t. P(x) : Q(x)”?
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Proving ∀ statements
Inference rule for ∀: Some remarks

By indentation, we indicate a subproof depending on an
assumption like “Let x ∈ C be arbitrary” above

An assumption has no justification

The subproof 2–4 is based on the assumption in 1

Steps from 1–4 cannot occur in justifications once the
subproof is finished (i.e, after pr ∀ in 5)

We often write “for all x ∈ C : x ∈ D” instead of

“for all x s.t. x ∈ C : x ∈ D”
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Using ∀ statements
Inference rule for using ∀ statements

The rule for using ∀ statements in proofs (us ∀)

If we know that a statement “for all x s.t. P(x) : Q(x)” is true
and if we have P(t) as a step already in the proof for any variable
t, then we may infer Q(t).

Examples

1. t ∈ A

2. for all x s.t. x ∈ A : x ∈ B

3. ? (1,2; us ∀)
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Using ∀ statements
Inference rule for using ∀ statements

The rule for using ∀ statements in proofs (us ∀)

If we know that a statement “for all x s.t. P(x) : Q(x)” is true
and if we have P(t) as a step already in the proof for any variable
t, then we may infer Q(t).

Examples

1. t ∈ A

2. for all x s.t. x ∈ A : x ∈ B

3. t ∈ B (1,2; us ∀)
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Using ∀ statements
Inference rule for using ∀ statements

The rule for using ∀ statements in proofs (us ∀)

If we know that a statement “for all x s.t. P(x) : Q(x)” is true
and if we have P(t) as a step already in the proof for any variable
t, then we may infer Q(t).

Examples

1. for all x , y s.t. |x | < |y | : x2 < y2

2. |a| < |b|
3. ? (1,2; us ∀)
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Using ∀ statements
Inference rule for using ∀ statements

The rule for using ∀ statements in proofs (us ∀)

If we know that a statement “for all x s.t. P(x) : Q(x)” is true
and if we have P(t) as a step already in the proof for any variable
t, then we may infer Q(t).

Examples

1. for all x , y s.t. |x | < |y | : x2 < y2

2. |a| < |b|
3. a2 < b2 (1,2; us ∀)

28 / 63



Using ∀ statements
Inference rule for using ∀ statements: An example

Let A, B, C be sets. Show that ⊆ is transitive, i.e., show that if
A ⊆ B and B ⊆ C , then A ⊆ C .

Assume: A, B, C sets
1. A ⊆ B

2. B ⊆ C

Show: A ⊆ C

1. Let x ∈ A be arbitrary
2. for all t ∈ A : t ∈ B (ass 1; def ⊆)
3. x ∈ B (1,2; us ∀)
4. for all t ∈ B : t ∈ C (ass 2; def ⊆)
5. x ∈ C (3, 4; us ∀)
6. for all x ∈ A : x ∈ C (1 − 5; pr ∀)
7. A ⊆ C (6; def ⊆)
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Using ∨ statements
Inference rule for using ∨ statements

The rule for using ∨ statements in proofs (us ∨), preliminary

If we know that “P or Q” is true and if we can show that R is true
assuming P and also that R is true assuming Q, then we may infer
that R is true.

➥ This is reasoning by cases!

Definition
Given sets A and B, the union of A and B, A ∪ B, is defined by
A ∪ B = {x | x ∈ A or x ∈ B}.
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Using ∨ statements
Inference rule for using ∨ statements: An example

Prove: For sets A, B, C , if A ⊆ C and B ⊆ C , then (A ∪ B) ⊆ C .

Assume: A, B, C sets
1. A ⊆ C

2. B ⊆ C

Show: (A ∪ B) ⊆ C

1. Let x ∈ A ∪ B be arbitrary
2. x ∈ A or x ∈ B (1; def ∪)
3. Case 1: Assume x ∈ A

4. for all t ∈ A : t ∈ C (ass 1; def ⊆)
5. x ∈ C (3, 4; us ∀)
6. Case 2: Assume x ∈ B

7. for all t ∈ B : t ∈ C (ass 2; def ⊆)
8. x ∈ C (6, 7; us ∀)
9. x ∈ C (2, 3 − 8; us ∨)
10. for all x ∈ A ∪ B : x ∈ C (1 − 9; pr ∀)
11. (A ∪ B) ⊆ C (10; def ⊆)
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Using and proving ∨ statements
Inference rule for using ∨ statements

Extended definition rule (def2)

When the statement P is the defining property of some definition,
it is permissible to either use P or prove P (according to
appropriate rules) without writing P itself as a step. For
justification of the step inferred, give the definition and not the
rule for using of proving P.

➥ This results in shorter proofs (with some details omitted)

Examples
1. a ∈ M

2. M ⊆ N

3. ? (1,2; def2 ⊆)

Warning: Later we will use def and def2 synonymously!
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Using and proving ∨ statements
Inference rule for using ∨ statements

Extended definition rule (def2)

When the statement P is the defining property of some definition,
it is permissible to either use P or prove P (according to
appropriate rules) without writing P itself as a step. For
justification of the step inferred, give the definition and not the
rule for using of proving P.

➥ This results in shorter proofs (with some details omitted)

Examples
1. a ∈ M

2. M ⊆ N

3. a ∈ N (1,2; def2 ⊆)

Warning: Later we will use def and def2 synonymously!

33 / 63



Using and proving ∨ statements
Inference rule for proving ∨ statements: An example

Prove rule for ∨ (pr ∨)

If P has been established as a line in a proof, then “P or Q” may
be written as a new line. Symmetrically, if Q has been established
as a line in a proof, then “P or Q” may be written as a new line.

Show: For sets A, B, C : if A ⊆ B or A ⊆ C , then A ⊆ B ∪ C
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Using and proving ∨ statements
Inference rule for proving ∨ statements: An example proof

Show: For sets A, B, C : if A ⊆ B or A ⊆ C , then A ⊆ B ∪ C

Assume: A, B, C sets
1. A ⊆ B or A ⊆ C

Show: A ⊆ (B ∪ C)

1. Let x ∈ A be arbitrary
2. A ⊆ B or A ⊆ C (ass 1)
3. Case 1: Assume A ⊆ B

4. x ∈ B (1, 3; def2 ⊆)
5. x ∈ B or x ∈ C (4; pr ∨)
6. Case 2: Assume A ⊆ C

7. x ∈ C (1, 6; def2 ⊆)
8. x ∈ B or x ∈ C (7; pr ∨)
9. x ∈ B or x ∈ C (2, 3 − 8; us ∨)
10. x ∈ (B ∪ C) (9; def ∪)
11. for all x ∈ A : x ∈ (B ∪ C) (1 − 10; pr ∀)
12. A ⊆ (B ∪ C) (11; def ⊆)
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Using and proving ∨ statements
General versions of the ∨ inference rules

The following two rules generalize the corresponding ones from before

The rule for using ∨ statements in proofs (us ∨), final

If we know that “P1 or P2 or · · · or Pn” is true and if we prove R
in all cases that do not lead to a contradiction, then we infer that
R is true. If all cases lead to a contradiction, then we infer the
negation of the most recently assumed statement.

The rule for proving ∨ statements in proofs (pr ∨), final

We may write “P1 or P2 or · · · or Pn” if we have established one
of P1 through Pn.
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Using and proving ∧ statements
Inference rule for using ∧ statements

Rule for using conjunctions (us ∧)

If “P and Q” is a step in a proof, then P can be written as a step
and Q can be written as a step.

Example

1. a < 1 and a ∈ A

2. ? (1; us ∧)
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Using and proving ∧ statements
Inference rule for using ∧ statements

Rule for using conjunctions (us ∧)

If “P and Q” is a step in a proof, then P can be written as a step
and Q can be written as a step.

Example

1. a < 1 and a ∈ A

2. a < 1 (or 2. a ∈ A) (1; us ∧)

38 / 63



Using and proving ∧ statements
Inference rule for proving ∧ statements

Rule for proving conjunctions (pr ∧)

In order to show “P and Q” in a proof, show P and also show Q.

Example

i . P
...

j . Q
...

k. ? ?
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Using and proving ∧ statements
Inference rule for proving ∧ statements

Rule for proving conjunctions (pr ∧)

In order to show “P and Q” in a proof, show P and also show Q.

Example

i . P
...

j . Q
...

k. P and Q (i , j ; pr ∧)
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Using and proving ∧ statements
An example: Show for sets A, B that A ∩ B = B ∩ A holds

Assume: A, B sets
Show: A ∩ B = B ∩ A

1. Let x ∈ A ∩ B be arbitrary
2. x ∈ A and x ∈ B (1; def ∩)
3. x ∈ A (2; us ∧)
4. x ∈ B (2; us ∧)
5. x ∈ B and x ∈ A (4, 3; pr ∧)
6. x ∈ B ∩ A (5; def ∩)
7. for all x ∈ A ∩ B : x ∈ B ∩ A (1 − 6; pr ∀)
8. A ∩ B ⊆ B ∩ A (7; def ⊆)
9. B ∩ A ⊆ A ∩ B (1 − 8; symmetry)
10. A ∩ B ⊆ B ∩ A and B ∩ A ⊆ A ∩ B (8, 9; pr ∧)
11. A ∩ B = B ∩ A (10; def =)

In 11, we use the definition of =, i.e., A = B iff A ⊆ B ∧ B ⊆ A
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The rule of symmetry

Rule of symmetry

If P(A1, B1, . . .) is any statement that has been proved for
arbitrary A1, B1, . . . in the assumptions and hypothesis, and if
A2, B2, . . . is any rearrangement of A1, B1, . . ., then P(A2, B2, . . .)
is true. The foregoing also applies to universal variables inside a for
all statement; that is, if for all A1, B1, . . . : P(A1, B1, . . .) is true,
then for all A1, B1, . . . : P(A2, B2, . . .) is true.

Example from above:

A ∩ B ⊆ B ∩ A

↓ ↓ ↓ ↓
B ∩ A ⊆ A ∩ B

Change A by B and B by A, i.e., apply the permutation (AB)
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Using theorems
Applying substitutions

Rule for substitution (subs)

Any name or representation of a mathematical object can be
replaced by another name/representation of the same object. It is
necessary to avoid using the same name for different objects.

Two examples

1. A ∩ B = C

2. A = D

3. D ∩ B = C (1,2; subs)

1. x2 + 3 = x

2. x = y + 1
3. (y + 1)2 + 3 = y+1 (1,2; subs)
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Using theorems

Theorem rule (thm)

In order to apply a theorem to steps in a proof, find a statement P
equivalent to the statement in the theorem. Then P may be
written as a new proof step or used, by subs, to change a step.

This is one possibility to use lemmas in proofs

Other possibilities will be discussed later when we consider
equivalences and iff (if and only if) statements
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Using theorems
An example: Show for sets A, B, C that A ∪ (B ∪ C) = (A ∪ B) ∪ C holds

1. Let x ∈ (A ∪ B) ∪ C be arbitrary
2. x ∈ (A ∪ B) or x ∈ C (1; def ∪)
3. Case 1: x ∈ A ∪ B

4. x ∈ A or x ∈ B (3; def ∪)
5. Case 1a: x ∈ A

6. x ∈ A ∪ (B ∪ C) (5; def ∪)
7. Case 1b: x ∈ B

8. x ∈ B ∪ C (7; def ∪)
9. x ∈ A ∪ (B ∪ C) (8; def ∪)
10. x ∈ A ∪ (B ∪ C) (4, 5–9; us ∨)
11. Case 2: x ∈ C

12. x ∈ B ∪ C (11; def ∪)
13. x ∈ A ∪ (B ∪ C) (12; def ∪)
14. x ∈ A ∪ (B ∪ C) (2, 3–13; us ∨)
15. (A ∪ B) ∪ C ⊆ A ∪ (B ∪ C) (1, 2–14; def ⊆)
16. C ∪ (B ∪ A) ⊆ (C ∪ B) ∪ A (15; Thm X ∪ Y = Y ∪ X )
17. A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C (16; symmetry (AC))
18. A ∪ (B ∪ C) = (A ∪ B) ∪ C (15, 17; def =)
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Proving and using if-then statements
Inference rule for proving if-then statements

Rule for proving implications (pr →)

In order to prove a statement of the form “if P, then Q”, assume
that P is true and show that Q is true.

i − 1. . . .
i . Assume P

...
j . Q
k. If P, then Q (i − j ; pr →)
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Proving and using if-then statements
Proving if-then statements: An example

Let A, B, C be sets. Prove: If A ⊆ B, then A ∩ C ⊆ B ∩ C .

Assume: A, B, C sets
Show: If A ⊆ B, then A ∩ C ⊆ B ∩ C

1. Assume A ⊆ B

2. Let x ∈ A ∩ C be arbitrary
3. x ∈ A (2; def ∩)
4. x ∈ C (2; def ∩)
5. x ∈ B (1, 3; def ⊆)
6. x ∈ B ∩ C (5, 4; def ∩)
7. A ∩ C ⊆ B ∩ C (2, 3 − 6; def ⊆)
8. If A ⊆ B, then A ∩ C ⊆ B ∩ C (1 − 7; pr →)
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Proving and using if-then statements
Inference rule for using if-then statements

Rule for using implications (us →) (or modus ponens (MP))

If P and “if P, then Q” are steps in a proof, then we may infer
that Q is a step.

i . P
...

j . If P, then Q
j + 1. Q (i , j ; us →)

Example
1. if x < 2, then x ∈ A

2. x < 2
3. x ∈ A (1,2; us →)
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Proving and using if-then statements
The inference rule for P or ¬P (lem)

Rule for P or ¬P (lem (= law of excluded middle))

For any P, P ∨ ¬P is true (in classical logic).

➥ lem is usually used to allow reasoning by cases

For a real number x , the absolute value of x , |x |, is defined by

|x | =

{

x if x ≥ 0

−x if x < 0

The two cases are of the form (x ≥ 0) ∨ ¬(x ≥ 0)

Prove: For all x ∈ R, |x |2 = x2.
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Proving and using if-then statements
The proof for the statement

1. Let x ∈ R be arbitrary
2. x ≥ 0 or ¬(x ≥ 0) (lem)
3. Case 1: x ≥ 0
4. |x | = x (3; def |·|)
5. |x |2 = x2 (4; prop R)
6. Case 2: ¬(x ≥ 0)
7. x < 0 (6; prop R))
8. |x | = −x (7; def |·|)
9. |x |2 = (−x)2 (8; prop R)
10. (−x)2 = x2 (9; prop R)
11. |x |2 = x2 (9, 10; subs)
12. |x |2 = x2 (2, 3 − 11; us ∨)
13. for all x ∈ R : |x |2 = x2 (1 − 12; pr ∀)
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Proving and using if-then statements
Equivalences

Proving equivalences (pr ↔)

In order to show that “P is equivalent to Q”, first assume P and
show Q, and then assume Q and show P.

Using equivalences (us ↔)

Any statement may be substituted for an equivalent statement

➥ This is an application of the equivalent replacement theorem

➥ We implicitly used this rule before, e.g., for definitions
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Handling iff statements

Recall: P iff Q holds iff P ↔ Q is valid

Prove P iff Q by proving “if P, then Q” and “if Q, then P”

“If P, then Q” is proved by assuming P and deriving Q

Alternatively, “if P, then Q” can be proved by contraposition

Prove “if P, then Q” by assuming ¬Q and deriving ¬P

Justify this procedure!
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Proofs by contradiction
The inference scheme

Idea: Assume the negation of some P and derive a contradiction!

...
i . Q

...
j . Assume ¬P (to get a contradiction)

...
k. ¬Q (which contradicts Q at some i .)
k + 1. P (j − k; contradiction)
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Proofs by contradiction
An example

Show: For every x ∈ R with x ∈ [0, π/2]: sin x + cos x ≥ 1

1. Let x ∈ R ∧ x ∈ [0, π/2] be arbitrary
2. sin x ≥ 0 and cos x ≥ 0 (1; prop sin, cos)
3. Assume ¬(sin x + cos x ≥ 1), i.e., sin x + cos x < 1
4. 0 ≤ sin x + cos x < 1 (2, 3; prop R)
5. 02 ≤ (sin x + cos x)2 < 12 (4; prop R)
6. 02 ≤ sin2 x + 2 sin x cos x + cos2 x < 12 (5; prop R)
7. 02 ≤ 1 + 2 sin x cos x < 12 (6; sin2 + cos2 = 1)
8. sin x cos x < 0 (7; prop R)
9. either sin x < 0 or cos x < 0 (8; prop R)

contradicts 2.
10. sin x + cos x ≥ 1 (3 − 9; contradiction)
11. ∀x ∈ R ∧ x ∈ [0, π/2] : sin x + cos x ≥ 1 (1 − 10; pr ∀)
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Handling existential statements
Using existential statements

Using existential statements (us ∃)

To use the statement “P(j) for some 1 ≤ j ≤ n” in a proof,
immediately follow it with the step

“Pick 1 ≤ j0 ≤ n such that P(j0)”.
This defines the symbol j0. The truth of both 1 ≤ j0 ≤ n and
P(j0) may be used in the remainder of the proof.

Example: For each i = 1, 2, . . . , 10, define Ai = {t ∈ R | 0 < t < 1
i
}

1. x ∈ Ai for some 1 ≤ i ≤ 10
2. pick 1 ≤ j ≤ 10 such that x ∈ Aj (1; us ∃)
3. 1 ≤ j ≤ 10 (from step 2.)
4. x ∈ Aj (from step 2.)
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Handling existential statements
Using existential statements: An example

Prove: Let B, A1, . . . , An be sets. Suppose that Ai ⊆ B holds for
all 1 ≤ i ≤ n. Then

(
⋃n

i=1 Ai

)

⊆ B.

Assume: Ai ⊆ B for all 1 ≤ i ≤ n

Show:
(

⋃n

i=1 Ai

)

⊆ B

1. Let x ∈
⋃n

i=1 Ai be arbitrary
2. x ∈ Ai for some 1 ≤ i ≤ n (1; def ∪)
3. pick 1 ≤ j ≤ n such that x ∈ Aj (2; us ∃)
4. Aj ⊆ B (3, ass; us ∀)
5. x ∈ B (3, 4; def ⊆)
6.

(
⋃n

i=1 Ai

)

⊆ B (1 − 5; def ⊆)

Remark: Our proof presentations will become more high level!
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Handling existential statements
Proving existential statements

Proving existential statements (pr ∃)

If 1 ≤ i ≤ n and P(i) are steps in a proof, then “for some
1 ≤ j ≤ n : P(j)” can be written as a proof step.

Examples

1. ?
2. 1 ≤ 3 ≤ 10
3. for some 1 ≤ i ≤ 10: x ∈ Ai (1, 2; pr ∃)
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Handling existential statements
Proving existential statements

Proving existential statements (pr ∃)

If 1 ≤ i ≤ n and P(i) are steps in a proof, then “for some
1 ≤ j ≤ n : P(j)” can be written as a proof step.

Examples

1. x ∈ A3

2. 1 ≤ 3 ≤ 10
3. for some 1 ≤ i ≤ 10: x ∈ Ai (1, 2; pr ∃)
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Handling existential statements
Proving existential statements

Proving existential statements (pr ∃)

If 1 ≤ i ≤ n and P(i) are steps in a proof, then “for some
1 ≤ j ≤ n : P(j)” can be written as a proof step.

Examples

1. x ∈ A3

2. 1 ≤ 3 ≤ 10
3. for some 1 ≤ i ≤ 10: x ∈ Ai (1, 2; pr ∃)

1. x ∈ Aj

2. 1 ≤ j ≤ n

3. ?
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Handling existential statements
Proving existential statements

Proving existential statements (pr ∃)

If 1 ≤ i ≤ n and P(i) are steps in a proof, then “for some
1 ≤ j ≤ n : P(j)” can be written as a proof step.

Examples

1. x ∈ A3

2. 1 ≤ 3 ≤ 10
3. for some 1 ≤ i ≤ 10: x ∈ Ai (1, 2; pr ∃)

1. x ∈ Aj

2. 1 ≤ j ≤ n

3. for some 1 ≤ i ≤ n : x ∈ Ai (1, 2; pr ∃)
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Handling existential statements
Proving existential statements

Proving existential statements (pr ∃)

To prove the statement “for some 1 ≤ j ≤ n : P(j)”, define j in
your proof (in terms of previously defined symbols) and show that
P(j) and 1 ≤ j ≤ n hold for j .

Let A1, . . . , An be sets. Show: For all 1 ≤ j ≤ n : Aj ⊆ ⋃n
i=1 Ai

1. Let 1 ≤ j ≤ n

2. Let x ∈ Aj be arbitrary
3. for some 1 ≤ i ≤ n : x ∈ Ai (1, 2; pr ∃)
4. x ∈ ⋃n

i=1 Ai (3; def ∪)
5. Aj ⊆ ⋃n

i=1 Ai (2 − 4; def ⊆)
6. for all 1 ≤ j ≤ n : Aj ⊆ ⋃n

i=1 Ai (1 − 5; pr ∀)
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Negations

Negation rule (¬)

The negation of “for all 1 ≤ i ≤ n : P(i)” is “for some
1 ≤ i ≤ n : ¬P(i)”. The negation of “for some 1 ≤ i ≤ n : P(i)” is
“for all 1 ≤ i ≤ n : ¬P(i)”.

➥ This is the application of “quantifier de Morgan rules”

➥ Further negation rules (exploiting de Morgan’s laws) can be
defined!
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Learning objectives

Ability to discuss the notions of formal and informal proofs

Ability to employ the discussed simple proof techniques

Ability to discuss the general structure of proofs, to apply the
different proof techniques and to produce proofs of theorems

Ability to disprove simple false conjectures
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