Argumentieren und Beweisen SS 2017

Exercise Sheet 2: Induction

Exercise 1.

Show that any natural number above 11 can be written as a sum of 4's and 5's.

Exercise 2.

Show that for any $n \in \mathbb{N}_{0}$, the number $\ell_{n}=4^{n+2}+5^{2 n+1}$ is divisible by 21 .

Exercise 3.

Prove the following: If a tree has $n \geq 1$ vertices, then it has $n-1$ edges.

Exercise 4.

Let I, I^{\prime} be interpretations with domains $\mathcal{U}, \mathcal{U}^{\prime}$. We say that I is isomorphic to I^{\prime} if there exists a bijection $\chi: \mathcal{U} \rightarrow \mathcal{U}^{\prime}$ such that the following conditions are fulfilled:

1. $\chi(I(c))=I^{\prime}(c)$ for every constant symbol c.
2. $\chi\left(I(f)\left(p_{1}, \ldots, p_{n}\right)\right)=I^{\prime}(f)\left(\chi\left(p_{1}\right), \ldots, \chi\left(p_{n}\right)\right)$ for every n-ary function symbol f $(n>0)$ and all $p_{1}, \ldots, p_{n} \in \mathcal{U}$.
χ is called isomorphism between I and I^{\prime}.
Now let χ be an isomorphism between I and I^{\prime}. Prove that for all closed (i.e., variablefree) terms t we have $I^{\prime}(t)=\chi(I(t))$.
Hint: Prove the statement by structural induction on t.

Exercise 5.

We define the set L of all lists as follows:

$$
L::=n i l \mid(c: L)
$$

nil denotes the empty list containing no element. We define the function append by $\operatorname{append}(n i l, y)=y$ and $\operatorname{append}((c: x), y)=(c: \operatorname{append}(x, y))$. Show that, for all lists ℓ, $\operatorname{append}(\ell, n i l)=\ell$ holds.

Exercise 6.

Recall from former lectures the definition of Fibonacci numbers: $F(0)=0, F(1)=1$, and for all integers $k \geq 0, F(k+2)=F(k+1)+F(k)$. Show that, for all integers $n \geq 0$, $F(n)<2^{n}$ holds.

Exercise 7.

Recall from former lectures the definition of Fibonacci numbers: $F(0)=0, F(1)=1$, and for all integers $k \geq 0, F(k+2)=F(k+1)+F(k)$. Show that, for all integers $n \geq 0$, $\sum_{i=0}^{n-1} F(i)<F(n+1)$ holds.

Exercise 8.

Recall from former lectures the definition of Fibonacci numbers: $F(0)=0, F(1)=1$, and for all integers $k \geq 0, F(k+2)=F(k+1)+F(k)$. Show that, for all integers $n \geq 3$, $\alpha^{n-2}<F(n)$ holds, where $\alpha=(1+\sqrt{5}) / 2$.
Remark: α is called the golden ratio and it can be proved that $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}=\alpha$.

Exercise 9.

What is wrong with the following proof of the statement: for any positive real x and any natural number $n, x^{n}=1$ holds?

Let $\mathcal{P}(n)$ denote $x^{n}=1$. The proof is by mathematical induction on n.
Base case. For $n=0, \mathcal{P}(n)$ is true because $x^{0}=1$.
Induction hypothesis. Assume $\mathcal{P}(n)$ is true for some $n \geq 0$.
Induction step. We want to show that $\mathcal{P}(n+1)$ is true. We derive:

$$
\begin{aligned}
x^{n+1} & =\frac{x^{n} \cdot x^{n}}{x^{n-1}} \\
& =\frac{1 \cdot 1}{1} \quad \text { (from above by the induction hypothesis) } \\
& =1
\end{aligned}
$$

Hence, $\mathcal{P}(n+1)$ is true.

Exercise 10.

Let $\mathcal{P}(n)$ denote the statement $n!>2^{n}$. Show that there is a smallest natural number n_{0} such that $\mathcal{P}(n)$ holds for all natural numbers $n \geq n_{0}$.

Exercise 11.

For sets A_{1}, A_{2}, \ldots and B_{1}, B_{2}, \ldots, define $B_{1}=A_{1}$ and $B_{n}=A_{n} \backslash\left(\bigcup_{i=1}^{n-1} A_{i}\right)$ for $n>1$.
Prove: $\bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n} A_{i}$.

Exercise 12.

Let us define the Fermat numbers $F_{n}=2^{\left(2^{n}\right)}+1$ for all natural numbers $n \geq 1$. Prove that for all $n \geq 1, F_{n}=\left(F_{0} \cdot F_{1} \cdots \cdot F_{n-1}\right)+2$.

Exercise 13.

This exercise is taken from Hopcroft, J.E., Motwani, R. and Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd ed., Pearson, 2007. It requires some background from automata theory.
A non-deterministic finite automaton A is a quintuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite set of states, Σ is a finite set of input symbols, $q_{0} \in Q$ is the start state, and $F \subseteq Q$ is the set of final (or accepting) states. The transition function δ takes a state from Q and an input symbol from Σ as arguments and returns a subset of Q.

The set of all strings over Σ is denoted by Σ^{*}. Let x and y be two strings. Then $x y$ is the concatenation of them. The length of a string w (i.e., the number of symbol occurrences in $w)$ is denoted by $|w| . \epsilon$ is the empty string which is of length 0 .

We denote by $\hat{\delta}$ the extension of δ to strings.

$$
\hat{\delta}(q, w)= \begin{cases}\{q\} & \text { if } w=\epsilon \text { (the empty string); } \\ \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a) & \text { if } w=x a, x \in \Sigma^{*} \text { and } a \in \Sigma .\end{cases}
$$

The language accepted by $A, L(A)$, is $\left\{w \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq\{ \}\right\}$.
Let $A=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right)$, where $\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\}, \delta\left(q_{0}, 1\right)=\left\{q_{0}\right\}, \delta\left(q_{1}, 0\right)=$ $\left\}, \delta\left(q_{1}, 1\right)=\left\{q_{2}\right\}\right.$, and $\delta\left(q_{2}, 0\right)=\delta\left(q_{2}, 1\right)=\{ \}$. Show that $L(A)=\{w \mid w$ ends in 01$\}$.
Hint. Use mutual induction on the following statements:

1. $\hat{\delta}\left(q_{0}, w\right)$ contains q_{0} for every w.
2. $\hat{\delta}\left(q_{0}, w\right)$ contains q_{1} if and only if w ends in 0 .
3. $\hat{\delta}\left(q_{0}, w\right)$ contains q_{2} if and only if w ends in 01 .

Exercise 14.

Consider a (generalized) chess board of size $2^{n} \times 2^{n}$, where one position is cut out. Take an L-tile made of three positions and show for all natural numbers $n \geq 1$ that the chess board can be covered using the L-tiles. Compute the number of required L-tiles.

Exercise 15.

You have a bag with red, yellow and blue chips. If only one chip remains in the bag, you put it out. Otherwise you remove two chips at random:

1. If one of the removed chips is red, you do not put any chips in the bag.
2. If both of the removed chips are yellow, you put one yellow chip and five blue chips in the bag.
3. If one of the chips is blue and the other is not red, you put ten red chips in the bag.

Show that any sequence of moves applied to an arbitrary bag always terminates or provide a non-terminating sequence of moves.

Exercise 16.

This exercise requires some background from linear algebra, which we take from https://en.wikipedia.org/wiki/Matrix_exponential.

A matrix exponential is a matrix function defined as follows

$$
e^{M}=\sum_{k=1}^{\infty} \frac{1}{k!} M^{k}=I+M+\frac{M^{2}}{2!}+\ldots
$$

where M is an $n \times n$ (real or complex) matrix and $M^{0}=I$ is the identity matrix. The series e^{M} converges absolutely (see http://math.ucr.edu/~res/math138A/expmatrix.pdf for the definition and a proof). Absolute convergence implies that manipulations on infinite sums like the Cauchy product

$$
\left(\sum_{i=0}^{\infty} A_{i}\right)\left(\sum_{j=0}^{\infty} B_{j}\right)=\left(\sum_{i, j=0}^{\infty} A_{i} B_{j}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} A_{k} B_{n-k}\right)
$$

can be safely performed.
Show the following:

1. If $A B=B A$ then $A^{k} e^{B}=e^{B} A^{k}$ and $e^{A} e^{B}=e^{B} e^{A}$ for arbitrary $n \times n$ (real or complex) matrices and $k \in \mathbb{N}_{0}$.
2. $e^{(s+t) A}=e^{s A} e^{t A}$ for arbitrary $n \times n$ (real or complex) matrix A and (real or complex) numbers s and t. What can you say about the inverse of e^{A} ?
