Argumentieren und Beweisen SS 2018

Exercise Sheet 1 (Proof Structure)

Some of the exercises and solutions have been taken from Wohlgemuth's book.
Exercise 1.
Translate each of the following statements into a first-order formula using \in as the only predicate symbol:
1.1 If $A \subseteq B$, then A and $C \backslash B$ are disjoint.
1.2 A is not a subset of B.
$1.3 \neg(A \cup B \subseteq C \backslash D)$.

Exercise 2.

Eliminate def ${ }^{2}$ from the proof fragment below.

$$
\begin{array}{lll}
\text { 1. } & a \in M & \\
\text { 2. } & M \subseteq N & \\
\text { 3. } & a \in N \quad\left(1,2 ; \operatorname{def}^{2} \subseteq\right)
\end{array}
$$

Exercise 3.

Let A and B be sets. Define $A \backslash B=\{x \mid x \in A \wedge x \notin B\}$ and $\bar{B}=\{x \in U \mid x \notin B\}$, where U is the universal set. Prove $(A \backslash B)=(A \cap \bar{B})$ in the following two steps.
3.1 Show: $(A \backslash B) \subseteq(A \cap \bar{B})$.
3.2 Show: $(A \cap \bar{B}) \subseteq(A \backslash B)$.

Exercise 4.

Show: \forall sets $A \forall$ sets $B:((A \backslash B) \cup B)=(A \cup B)$. Contrary to the examples in the lecture, handle the forall statements on the object level and not on the meta level.

Exercise 5.

Show: $\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}$ holds for sets A_{1}, \ldots, A_{n}.

Exercise 6.

Assume that A, B, and C are sets. Show: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Exercise 7.

For sets A, B, and C :
7.1 Show: $A \subseteq B \quad$ iff $\quad A \cap B=A$.
7.2 Show: $A \subseteq B \quad$ iff $\quad A \cup B=B$.

Exercise 8.

Given sets A_{k} (for $k=1,2,3,4$), define

$$
\begin{array}{ll}
B_{1}=A_{1} & B_{2}=A_{2} \backslash A_{1} \\
B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right) & B_{4}=A_{4} \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right) .
\end{array}
$$

8.1 Prove: $\bigcup_{i=1}^{4} B_{i}=\bigcup_{i=1}^{4} A_{i}$
8.2 Prove: For all $1 \leq i, j \leq 4, i \neq j: B_{i} \cap B_{j}=\emptyset$

Exercise 9.

Let $f: A \mapsto B$. Suppose $X \subseteq A, Y \subseteq B$, and $y \in B$. Define:
P1 $f(X)=\{b \in B \mid b=f(x)$ for some $x \in X\}$
P2 $f^{-1}(Y)=\{a \in A \mid f(a) \in Y\}$
P3 $f^{-1}(y)=\{a \in A \mid f(a)=y\}$
Let $C \subseteq B$, and $D \subseteq B$. Show: $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$. First structure the proof in the same way as we disussed in the lecture. Then present the proof in English.

Exercise 10.

Prove or refute the following:
Let $f: A \mapsto B, E \subseteq A, F \subseteq A$. Then $f(E \cap F)=f(E) \cap f(F)$.

Exercise 11.

A function $f: A \mapsto B$ is called one-to-one provided that for all $a_{1}, a_{2} \in A$: if $f\left(a_{1}\right)=$ $f\left(a_{2}\right)$ then $a_{1}=a_{2}$.

Let $f: \mathbb{R} \mapsto \mathbb{R}$ be defined by $f(x)=2 x+4$ for all $x \in \mathbb{R}$. Prove that f is one-to-one.

Exercise 12.

A function $f: A \mapsto B$ is called onto if for each $b \in B$ there exists some $a \in A$ such that $f(a)=b$.

Show that there exists a one-to-one function $g: \mathbb{N} \mapsto \mathbb{N}$ which is not onto.

Exercise 13.

A sequence is a function $a: \mathbb{N} \mapsto \mathbb{R} . a(n)$ is called the nth term of the sequence and is denoted by a_{n}. The sequence itself is denoted by $\left\langle a_{1}, a_{2}, \ldots\right\rangle$ or by $\left\langle a_{n}\right\rangle$. A number $L \in \mathbb{R}$ is defined to be the limit of $\left\langle a_{n}\right\rangle$, written $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=L$, provided that, given a real number $\epsilon>0$, there exists a natural number N such that for all $n>N:\left|a_{n}-L\right|<\epsilon$. If L is the limit of $\left\langle a_{n}\right\rangle$, then $\left\langle a_{n}\right\rangle$ converges to L. A sequence with no limit is said to diverge.

Show that $\left\langle a_{n}\right\rangle$ defined by $a_{n}=n /(n+1)$ has limit 1 .

Exercise 14.

Let $\left\langle a_{n}\right\rangle$ be a sequence. If $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=L$ and $\lim _{n \rightarrow \infty}\left\langle a_{n}\right\rangle=M$, then $L=M$. That is, if a sequence has a limit, then it is unique.

Hint: $|x-z| \leq|x-y|+|y-z|$ for all $x, y, z \in \mathbb{R}$.

