
Argumentieren und Beweisen SS 2018

Exercise Sheet 2 (Induction)

Exercise 1.

Show that any natural number above 11 can be written as a sum of 4’s and 5’s.

Exercise 2.

Show that for any n ∈ N0, the number ℓn = 4n+2 + 52n+1 is divisible by 21.

Exercise 3.

Prove the following: If a tree has n ≥ 1 vertices, then it has n− 1 edges.

Exercise 4.

Let I, I ′ be interpretations with domains U , U ′. We say that I is isomorphic to I ′ if
there exists a bijection χ : U → U ′ such that the following conditions are fulfilled:

1. χ(I(c)) = I ′(c) for every constant symbol c.

2. χ(I(f)(p1, . . . , pn)) = I ′(f)(χ(p1), . . . , χ(pn)) for every n-ary function symbol f
(n > 0) and all p1, . . . , pn ∈ U .

χ is called isomorphism between I and I ′.

Now let χ be an isomorphism between I and I ′. Prove that for all closed (i.e., variable-
free) terms t we have I ′(t) = χ(I(t)).
Hint: Prove the statement by structural induction on t.

Exercise 5.

We define the set L of all lists as follows:

L ::= nil | (c : L)

nil denotes the empty list containing no element. We define the function append by
append(nil , y) = y and append((c : x ), y) = (c : append(x , y)). Show that, for all lists ℓ,
append(ℓ,nil) = ℓ holds.

Exercise 6.

Recall from former lectures the definition of Fibonacci numbers: F (0) = 0, F (1) = 1,
and for all integers k ≥ 0, F (k+2) = F (k+1)+F (k). Show that, for all integers n ≥ 0,
F (n) < 2n holds.

Exercise 7.

Recall from former lectures the definition of Fibonacci numbers: F (0) = 0, F (1) = 1,
and for all integers k ≥ 0, F (k+2) = F (k+1)+F (k). Show that, for all integers n ≥ 0,
∑n−1

i=0 F (i) < F (n+ 1) holds.
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Exercise 8.

Recall from former lectures the definition of Fibonacci numbers: F (0) = 0, F (1) = 1,
and for all integers k ≥ 0, F (k+2) = F (k+1)+F (k). Show that, for all integers n ≥ 3,
αn−2 < F (n) holds, where α = (1 +

√
5)/2.

Remark: α is called the golden ratio and it can be proved that lim
n→∞

Fn+1/Fn = α.

Exercise 9.

What is wrong with the following proof of the statement: for any positive real x and any

natural number n, xn = 1 holds?

Let P(n) denote xn = 1. The proof is by mathematical induction on n.

Base case. For n = 0, P(n) is true because x0 = 1.

Induction hypothesis. Assume P(n) is true for some n ≥ 0.

Induction step. We want to show that P(n + 1) is true. We derive:

xn+1 =
xn · xn
xn−1

=
1 · 1
1

(from above by the induction hypothesis)

= 1 .

Hence, P(n + 1) is true. ✷

Exercise 10.

Let P(n) denote the statement n! > 2n. Show that there is a smallest natural number
n0 such that P(n) holds for all natural numbers n ≥ n0.

Exercise 11.

For sets A1, A2, . . . and B1, B2, . . ., define B1 = A1 and Bn = An \ (⋃n−1
i=1 Ai) for n > 1.

Prove:
⋃n

i=1Bi =
⋃n

i=1 Ai.

Exercise 12.

Let us define the Fermat numbers Fn = 2(2
n) + 1 for all natural numbers n ≥ 1. Prove

that for all n ≥ 1, Fn = (F0 · F1 · · · · · Fn−1) + 2.

Exercise 13.

Let a, b ∈ R, n ∈ N. Then (a+ b)n =
∑n

i=0

(

n
i

)

an−i bi.

Exercise 14.

Suppose we have an operation (denoted by ′) which is applied to symbols. The operation
′ satisfies the following three axioms:

(u+ v)′ = u′ + v′ (A+′)

(uv)′ = uv′ + u′v (A·′)
(cu)′ = cu′ (Ac′)
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Define w(k) inductively as follows:

B: w(0) = w

S: Suppose w(n) is already defined for some natural number n ≥ 0. Then w(n+1) =
(w(n))

′

.

Prove Leibniz’s formula (uv)(n) =
∑n

i=0

(

n
i

)

u(i) v(n−i). (Recall that
(

n
i

)

+
(

n
i−1

)

=
(

n+1
i

)

.)

Exercise 15.

This exercise is taken from Hopcroft, J.E., Motwani, R. and Ullman, J.D.: Introduction

to Automata Theory, Languages, and Computation, 3rd ed., Pearson, 2007. It requires
some background from automata theory.
A non-deterministic finite automaton A is a quintuple (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is a finite set of input symbols, q0 ∈ Q is the start state, and F ⊆ Q is
the set of final (or accepting) states. The transition function δ takes a state from Q and
an input symbol from Σ as arguments and returns a subset of Q.

The set of all strings over Σ is denoted by Σ∗. Let x and y be two strings. Then
xy is the concatenation of them. The length of a string w (i.e., the number of symbol
occurrences in w) is denoted by |w|. ǫ is the empty string which is of length 0.

We denote by δ̂ the extension of δ to strings.

δ̂(q, w) =

{

{q} if w = ǫ (the empty string);
⋃

p∈δ̂(q,x) δ(p, a) if w = xa, x ∈ Σ∗ and a ∈ Σ.

The language accepted by A, L(A), is {w | δ̂(q0, w) ∩ F 6= {}}.
Let A = ({q0, q1, q2}, {0, 1}, δ, q0 , {q2}), where δ(q0, 0) = {q0, q1}, δ(q0, 1) = {q0}, δ(q1, 0) =
{}, δ(q1, 1) = {q2}, and δ(q2, 0) = δ(q2, 1) = {}. Show that L(A) = {w | w ends in 01}.
Hint. Use mutual induction on the following statements:

1. δ̂(q0, w) contains q0 for every w.

2. δ̂(q0, w) contains q1 if and only if w ends in 0.

3. δ̂(q0, w) contains q2 if and only if w ends in 01.

Exercise 16.

Consider a (generalized) chess board of size 2n × 2n, where one position is cut out. Take
an L-tile made of three positions and show for all natural numbers n ≥ 1 that the chess
board can be covered using the L-tiles. Compute the number of required L-tiles.
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Exercise 17.

You have a bag with red, yellow and blue chips. If only one chip remains in the bag, you
put it out. Otherwise you remove two chips at random:

1. If one of the removed chips is red, you do not put any chips in the bag.

2. If both of the removed chips are yellow, you put one yellow chip and five blue chips
in the bag.

3. If one of the chips is blue and the other is not red, you put ten red chips in the
bag.

Show that any sequence of moves applied to an arbitrary bag always terminates or provide
a non-terminating sequence of moves.

Exercise 18.

This exercise requires some background from linear algebra, which we take from
https://en.wikipedia.org/wiki/Matrix_exponential.

A matrix exponential is a matrix function defined as follows

eM =
∞
∑

k=1

1

k!
Mk = I +M +

M2

2!
+ . . .

where M is an n × n (real or complex) matrix and M0 = I is the identity matrix. The
series eM converges absolutely (see http://math.ucr.edu/~res/math138A/expmatrix.pdf
for the definition and a proof). Absolute convergence implies that manipulations on
infinite sums like the Cauchy product

(

∞
∑

i=0

Ai

)(

∞
∑

j=0

Bj

)

=
(

∞
∑

i,j=0

AiBj

)

=

∞
∑

n=0

(

n
∑

k=0

AkBn−k

)

can be safely performed.
Show the following:

1. If AB = BA then AkeB = eBAk and eAeB = eBeA for arbitrary n × n (real or
complex) matrices and k ∈ N0.

2. e(s+t)A = esAetA for arbitrary n × n (real or complex) matrix A and (real or
complex) numbers s and t. What can you say about the inverse of eA?
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