Institut für Computersprachen Technische Universität Wien Prof. Dr. J. Knoop A-1040 Wien Argentinierstr. 8 Tel.: 01-58801-18510

"Analyse und Verifikation (185.276, VU 2.0, ECTS 3.0)"

SS 2012

Übungsblatt 4

17.05.2012

Aufgabe 1:(5+5) Punkte

Zeigen Sie, dass "Simple Constants" ein monotones, aber kein distributives Datenflussanalyse-problem ist.

Aufgabe 2: (5+5 Punkte)

Eine Variable x heißt tot an einer Programmstelle n, wenn auf allen von n ausgehenden Pfaden zum Endknoten e dem jeweils ersten lesenden Zugriff auf die Variable x ein schreibender Zugriff vorausgeht. Sie heißt $partiell\ tot$ an der Programmstelle n, wenn es (mindestens) einen von n ausgehenden Pfad mit dieser Eigenschaft gibt.

- \bullet Spezifizieren Sie das MaxFP-Gleichungssystem für kantenbenannte Einzelinstruktionsgraphen, dessen größte Lösung für jeden Programmpunkt n angibt, ob x an n tot ist.
- Wie muss das Gleichungssystem aus der vorigen Teilaufgabe geändert werden, um für jeden Programmpunkt die Eigenschaft partiell tot für Variable x zu berechnen? Welche (extreme) Lösung des Gleichungssystems ist dann gesucht?

Aufgabe 3: (5+5 Punkte)

Beweisen Sie folgendes Lemma aus Kapitel 8 der Vorlesung:

Lemma

Sei $\llbracket \ \rrbracket$ ein Datenflussanalysefunktional. Dann gilt für jede Kante $e \in E$:

- 1. $[e]_R$ ist wohldefiniert und monoton.
- 2. $\llbracket e \rrbracket_R$ ist additiv, falls $\llbracket e \rrbracket$ distributiv ist.

Aufgabe 4: (5+5 Punkte)

Beweisen Sie folgendes Lemma aus Kapitel 8 der Vorlesung:

Lemma

Sei [] ein Datenflussanalysefunktional. Dann gilt für jede Kante $e \in E$:

- 1. $[e]_R \circ [e] \sqsubseteq Id_C$, falls [e] monoton ist.
- 2. $\llbracket e \rrbracket \circ \llbracket e \rrbracket_B \supseteq Id_{\mathcal{C}}$, falls $\llbracket e \rrbracket$ distributiv ist.

Abgabe: Dienstag, den 05.06.2012, vor der Vorlesung.