6.0/4.0 VU Formale Methoden der Informatik 185.291 SS $2011 \quad 28$ October 2011				
$\underbrace{}_{\substack{\text { Kennaht } \\ \text { (study } \text { (i) }}}$		Familienname (family name)	Vorname (first name)	$\underbrace{\substack{\text { Gruppe } \\ \text { (exsem) }}}$

1.) Consider the following problem:

IMPERFECT-COMPRESSION(IC)

INSTANCE: A program (i.e. a source code) Π such that Π takes one string as input and outputs a string. It is guaranteed that Π terminates on any input string.
QUESTION: Does there exists an input string I for Π such that $|\Pi(I)|>|I|$. Here $|J|$ denotes the length of a string J, and $\Pi(J)$ is the string returned by Π on input string J.

Prove that the problem IC is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for IC) and argue that it is correct.
(15 points)
2.) Let φ be the formula $(x \rightarrow(y \rightarrow z)) \rightarrow((x \wedge y) \rightarrow z)$.
(a) Use the Tseitin translation and compute $\hat{\delta}(\varphi)$. (Hint: It is allowed to avoid the labels for atoms; use the atoms instead. Moreover, use ℓ_{φ} as the label for φ.) (5 points)
(b) Try to derive the empty clause \square from

$$
\left(\bigwedge_{D \in \hat{\delta}(\varphi)} D\right) \wedge \neg \ell_{\varphi}
$$

by resolution.
(4 points)
(c) Answer the following questions and explain in detail.
i. Is $\bigwedge_{D \in \hat{\delta}(\varphi)} D$ satisfiable? If so then provide a model.
ii. Is $\bigwedge_{D \in \hat{\delta}(\varphi)} D$ valid? If not then provide a counterexample.
iii. Is $\left(\bigwedge_{D \in \hat{\delta}(\varphi)} D\right) \rightarrow \ell_{\varphi}$ valid?
iv. Is φ valid?
3.) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider a as its input and c as its output.
$\{1: a \geq 0\}$
$b \leftarrow 1$;
$c \leftarrow 0 ;$
$\left\{\operatorname{Inv}: b=(c+1)^{3} \wedge 0 \leq c^{3} \leq a\right\}$
while $b \leq a$ do
$d \leftarrow 3 * c+6 ;$
$c \leftarrow c+1 ;$
$b \leftarrow b+c * d+1$
od
$\left\{2: c^{3} \leq a<(c+1)^{3}\right\}$
4.) Simulation and Bisimulation
(a) Let K_{1} and K_{2} be the two Kripke structures given below. Check which of the relations $K_{1} \leq K_{2}, K_{1} \geq K_{2}, K_{1} \equiv K_{2}$ hold on K_{1} and K_{2}. Justify your answer.

(5 points)
(b) Show that simulation is a transitive relation: Given any 3 Kripke structures $K_{1}=$ $\left\{S_{1}, R_{1}, L_{1}\right\}, K_{2}=\left\{S_{2}, R_{2}, L_{2}\right\}$ and $K_{3}=\left\{S_{3}, R_{3}, L_{3}\right\}$ such that $K_{1} \leq K_{2}$ and $K_{2} \leq$ K_{3}, it holds that $K_{1} \leq K_{3}$.
(5 points)
(c) Given the Kripke structures $K_{1}=\left(S_{1}, R_{1}, L_{1}\right), K_{2}=\left(S_{2}, R_{2}, L_{2}\right), K_{3}=\left(S_{3}, R_{3}, L_{3}\right)$, the simulation relation $H_{1} \subseteq S_{1} \times S_{2}$ from K_{1} to K_{2} and the simulation relation $H_{2} \subseteq$ $S_{2} \times S_{3}$ from K_{2} to K_{3}, state an algorithm which computes a simulation H_{3} from K_{1} to K_{3}.
(5 points)

