6.0/4.0 VU Formale Methoden der Informatik 185.291 SS 2011 28 October 2011				
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

IMPERFECT-COMPRESSION(IC)

INSTANCE: A program (i.e. a source code) Π such that Π takes one string as input and outputs a string. It is guaranteed that Π terminates on any input string.

QUESTION: Does there exists an input string I for Π such that $|\Pi(I)| > |I|$. Here |J| denotes the length of a string J, and $\Pi(J)$ is the string returned by Π on input string J.

Prove that the problem **IC** is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **IC**) and argue that it is correct. (15 points)

- **2.)** Let φ be the formula $(x \to (y \to z)) \to ((x \land y) \to z)$.
 - (a) Use the Tseitin translation and compute $\hat{\delta}(\varphi)$. (Hint: It is allowed to avoid the labels for atoms; use the atoms instead. Moreover, use ℓ_{φ} as the label for φ .) (5 points)
 - (b) Try to derive the empty clause \Box from

$$\left(\bigwedge_{D\in\hat{\delta}(\varphi)}D\right)\wedge\neg\ell_{\varphi}$$

by resolution.

(4 points)

- (c) Answer the following questions and explain in detail.
 - i. Is $\bigwedge_{D \in \hat{\delta}(\varphi)} D$ satisfiable? If so then provide a model. ii. Is $\bigwedge_{D \in \hat{\delta}(\varphi)} D$ valid? If not then provide a counterexample. iii. Is $\left(\bigwedge_{D \in \hat{\delta}(\varphi)} D\right) \rightarrow \ell_{\varphi}$ valid? iv. Is φ valid?
- (6 points)
- **3.**) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider a as its input and c as its output.

$$\begin{array}{l} \left\{ \begin{array}{l} 1 \colon a \geq 0 \end{array} \right\} \\ b \leftarrow 1; \\ c \leftarrow 0; \\ \left\{ \begin{array}{l} Inv \colon b = (c+1)^3 \land 0 \leq c^3 \leq a \end{array} \right\} \\ \text{while } b \leq a \text{ do} \\ d \leftarrow 3 \ast c + 6; \\ c \leftarrow c + 1; \\ b \leftarrow b + c \ast d + 1 \\ \text{od} \\ \left\{ \begin{array}{l} 2 \colon c^3 \leq a < (c+1)^3 \end{array} \right\} \end{array}$$

- 4.) Simulation and Bisimulation
 - (a) Let K_1 and K_2 be the two Kripke structures given below. Check which of the relations $K_1 \leq K_2, K_1 \geq K_2, K_1 \equiv K_2$ hold on K_1 and K_2 . Justify your answer.

(5 points)

- (b) Show that simulation is a transitive relation: Given any 3 Kripke structures $K_1 = \{S_1, R_1, L_1\}, K_2 = \{S_2, R_2, L_2\}$ and $K_3 = \{S_3, R_3, L_3\}$ such that $K_1 \leq K_2$ and $K_2 \leq K_3$, it holds that $K_1 \leq K_3$. (5 points)
- (c) Given the Kripke structures $K_1 = (S_1, R_1, L_1)$, $K_2 = (S_2, R_2, L_2)$, $K_3 = (S_3, R_3, L_3)$, the simulation relation $H_1 \subseteq S_1 \times S_2$ from K_1 to K_2 and the simulation relation $H_2 \subseteq S_2 \times S_3$ from K_2 to K_3 , state an algorithm which computes a simulation H_3 from K_1 to K_3 . (5 points)