6.0/4.0 VU Formale Methoden der Informatik (185.291) December 09, 2011

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

COMPARISON

INSTANCE: A pair (Π_1, Π_2) of programs such that:

- Π_1 takes an integer as input and outputs a string, and
- Π_2 takes an integer as input and outputs a string.

It is guaranteed that Π_1 and Π_2 terminate on any input integer.

QUESTION: Does there exists an integer n such that $|\Pi_1(n)| > |\Pi_2(n)|$? Here |J| denotes the length of a string J, and $\Pi_1(n)$ and $\Pi_2(n)$ are the strings returned by Π_1 and Π_2 on input integer n, respectively.

Prove that the problem **COMPARISON** is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **COM-PARISON**) and argue that it is correct.

(15 points)

2.) (a) Let φ^{uf} be an equality formula containing uninterpreted functions. Let $FC^{E}(\varphi^{uf})$ and $flat^{E}(\varphi^{uf})$ be obtained by Ackermann's reduction. Prove the following.

 φ^{uf} is satisfiable iff $FC^{E}(\varphi^{uf}) \wedge flat^{E}(\varphi^{uf})$ is satisfiable.

Hints:

H1: φ^{uf} is valid iff $FC^E(\varphi^{uf}) \to flat^E(\varphi^{uf})$ is valid. H2: $flat^E(\neg \varphi^{uf}) = \neg flat^E(\varphi^{uf})$. H3: $FC^E(\varphi^{uf}) = FC^E(\neg \varphi^{uf})$.

(7 points)

- (b) Answer the following questions and *explain in detail*.
 - i. Does $(FC^{E}(\varphi^{uf}) \wedge flat^{E}(\varphi^{uf})) \equiv \varphi^{uf}$ hold in general?
 - ii. Let $\Psi_A(\varphi^{uf})$ be the result of Ackermann's translation applied to φ^{uf} and let $\Psi_B(\varphi^{uf})$ be the result of Bryant's translation applied to φ^{uf} . Does the following hold?

 $\Psi_A(\varphi^{uf})$ is valid iff $\Psi_B(\varphi^{uf})$ is valid

iii. With the same notation as in ii., does the following hold?

$$\neg \Psi_A(\varphi^{uj})$$
 is satisfiable iff $\neg \Psi_B(\varphi^{uj})$ is satisfiable

iv. Consider the sparse method and the procedure which makes a graph chordal. Suppose this procedure introduces k new edges. Is k exponential in the number of vertices of the input graph?

(8 points)

```
\begin{array}{l} x \leftarrow x + y; \\ \text{if } x < 0 \text{ then} \\ \text{abort} \\ \text{else} \\ \text{while } x \neq y \text{ do} \\ x \leftarrow x + 1; \\ y \leftarrow y + 2 \\ \text{od} \\ \text{fi} \end{array}
```

```
(15 points)
```

- 4.) Linear Temporal Logic
 - (a) Give an Büchi automaton for the LTL formula $\mathbf{XX}(a \lor \mathbf{FG}b)$.

Since there were two slightly different definitions of Büchi automata used in the lecture slides and in the exercises please provide which definition you are using for your solution:

- \square [Exercises] A Büchi automaton $\mathcal{A} = (\Sigma, Q, \Delta, I, F)$ is a finite automaton where
 - $-\Sigma$ is the finite alphabet,
 - Q is the finite set of states,
 - $-\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation,
 - $I \subseteq Q$ is the set of initial states, and
 - $F \subseteq Q$ is the set of accepting states.
- \square [Lecture Slides] A Büchi automaton $\mathcal{A} = (Q, I, \delta, F, \lambda)$ is a finite automaton where
 - $\ Q$ is the finite set of states,
 - $I \subseteq Q$ is the set of initial states,
 - $\delta:Q\rightarrow 2^Q$ is a transition relation,
 - $F \subseteq Q$ is the set of accepting states, and
 - $-\lambda: Q \to 2^P$ is a labeling function where P is the set of propositions.

(4 points)

(b) For each of the given Büchi automata give a corresponding LTL formula:

(6 points)

- (c) For this subexercise we define a Büchi-automaton as a 5-tuple $\mathcal{A} = \langle Q, \Sigma, \delta, I, F \rangle$, where
 - Q is some finite set of *states*,
 - Σ is a finite *alphabet*,

- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation,
- $I \subseteq Q$ is the set of *initial states*, and
- $F \subseteq Q$ is the set of *final states*.

Note, this corresponds to the notion of Büchi-automata as used in the exercises (first option above).

A word is an infinite sequence $s_1s_2\cdots$ with $s_i \in \Sigma$. A run of $\mathcal{A} = \langle Q, \Sigma, \delta, I, F \rangle$ on a word $s_1s_2\cdots$ is an infinite sequence $q_0q_1\cdots$ of states such that $q_0 \in I$ and $(q_{i-1}, s_i, q_i) \in \Delta$ for all $i \geq 1$. The run $q_0q_1\cdots$ is accepting, if $q_i \in F$ for infinitely many *i*. An automaton \mathcal{A} accepts a word, if it has an accepting run on it.

Assume some fixed Büchi-automaton $\langle Q, \Sigma, \delta, I, F \rangle$ and an infinite word uv^{ω} ($uv^{\omega} = uvvv \cdots$), where $u = s_1 s_2 \cdots s_n$ and $v = s_{n+1} s_{n+2} \cdots s_{2n}$ with $s_i \in \Sigma$ (i.e., the length of u is equal to the length of v).

Augment the below C program such that CBMC determines, whether uv^{ω} is accepted by a lasso, i.e., if there is a sequence of states q_0, q_1, \ldots, q_{2n} with $q_0 \in I$, $(q_{i-1}, s_i, q_i) \in \Delta$ for all $1 \leq i \leq n$, $q_n = q_{2n}$ and there is some $q_i \in F$ with $n \leq i \leq 2n$. Furthermore, ensure that CBMC reports a lasso in case there exists one. Assume that the states and alphabet symbols are given by natural numbers, i.e., $Q = 1, \ldots, m$ and $\Sigma = 1, \ldots, l$ for some $m, l \in \mathbb{N}$.

```
#define TRUE 1
#define FALSE 0
```

```
#define N n //length of half the input word = length of u = length of v
#define M m //number of automaton states
#define L l //number of alphabet symbols
```

```
bool delta[M][L][M]; //delta[i][a][j] = TRUE <=> (i,a,j) is in transition relation
bool initial[M]; //initial[i] = TRUE <=> i is initial state
bool final[M]; //final[i] = TRUE <=> i is final state
```

int word[2N]; //the input word uv

int lasso[2N+1]; // sequence of automaton states

int nondet_int();

(5 points)