6.0/4.0 VU Formale Methoden der Informatik 185.291 WS2011/SS $2012 \quad 29$ June 2012				
$\underbrace{}_{\substack{\text { Kennahal } \\ \text { (study } \\ \text { di) }}}$	$\underbrace{\text { dit }}_{\substack{\text { Matrikelnummer } \\ \text { (student id) }}}$	Familienname (family name)	Vorname (first name)	\mathbf{A}

1.) We want to prove the $N P$-hardness of SUBSET SUM. Your task is to give a polynomial time reduction R from PARTITION (which is $N P$-complete) to SUBSET SUM. Additionally, prove the " \Leftarrow " direction in the proof of correctness of the reduction, i.e., let x denote an arbitrary instance of the PARTITION problem and let $R(x)$ denote the corresponding instance of the SUBSET SUM problem. You have to prove the following statement: if $R(x)$ is a positive instance of SUBSET SUM, then x is a positive instance of PARTITION.
The definiton of these two problems is given below:

PARTITION:

Instance: A finite set of n positive integers $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
Question: Can the set P be partitioned into two subsets P_{1}, P_{2} such that the sum of the numbers in P_{1} equals the sum of the numbers in P_{2} ?

SUBSET SUM:

Instance: A finite set of integer numbers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and an integer number t.
Question: Does there exist a subset $S^{\prime} \subseteq S$, s.t. the sum of the elements in S^{\prime} is equal to t, i.e., $\left(\sum_{a_{i} \in S^{\prime}} a_{i}\right)=t$?
(15 points)
2.) (a) Let φ^{E} be the following equality logic formula:

$$
\left(x_{5}=x_{6} \vee x_{4} \neq x_{5}\right) \wedge x_{4} \neq x_{6} \wedge x_{4}=x_{2} \wedge x_{2}=x_{3} \wedge\left(x_{3} \neq x_{1} \vee x_{4}=x_{1}\right)
$$

Apply the Sparse Method to obtain an equisatisfiable propositional formula: Apply simplification/preprocessing to obtain an equi-satisfiable φ_{S}^{E}; draw the nonpolar equality $\operatorname{graph} G_{N P}^{E}\left(\varphi_{S}^{E}\right) ;$ make $G_{N P}^{E}\left(\varphi_{S}^{E}\right)$ chordal; compute the propositional skeleton $e\left(\varphi_{S}^{E}\right)$ and transitivity constraints B_{t}; and give the resulting propositional formula. (6 points)
(b) Given a set \mathcal{C} of clauses, a conflict graph G with respect to \mathcal{C}, and some clause D. Prove the following:
If D was learned from G following the first-UIP scheme, then the following formula is valid:

$$
\left(\bigwedge_{C \in \mathcal{C}} C\right) \rightarrow D
$$

(9 points)
3.) (a) Show that the following version of the 'logical consequence'-rule is not sound, by means of a counter-example; argue that it is a counter-example.

$$
\frac{\{F\} p\{G\} G^{\prime} \Rightarrow G}{\{F\} p\left\{G^{\prime}\right\}}
$$

(A rule being sound means: "Whenever all premises are true, the conclusion is also true.")
(5 points)
(b) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider n as its input and a as its output.
Hint: Use the annotation rule

```
while e do...od
    \mapsto{Inv}while e do {Inv\wedgee^t=\mp@subsup{t}{0}{}}\cdots{Inv\wedge(e=>0\leqt<\mp@subsup{t}{0}{})}\circd{Inv\wedge\nege}
```

```
\(\{n \geq 1\}\)
\(a \leftarrow 0\);
\(b \leftarrow 2 ;\)
\(\left\{\right.\) Inv: \(\left.b=2^{a+1} \wedge 0<b \leq 2 n\right\}\)
while \(b \leq n\) do
    \(a \leftarrow a+1 ;\)
    \(b \leftarrow b+b\)
od;
\(\left\{2^{a} \leq n<2^{a+1}\right\}\)
```


4.) Computation Tree Logic.

Let $A P$ be a set of propositional symbols, and $A P^{\prime} \subseteq A P$ be a subset of $A P$.
We recall the definition of ACTL formulae over $A P$:

- $p \in A P$ and $\neg p \in A P$ are ACTL formulae,
- if φ and ψ are ACTL formulae, then $\varphi \wedge \psi, \varphi \vee \psi, \mathbf{A X} \varphi, \mathbf{A G} \varphi$, and $\mathbf{A}[\varphi \mathbf{U} \psi]$ are ACTL formulae.

Let $M=(S, I, R, L)$ and $M^{\prime}=\left(S^{\prime}, I^{\prime}, R^{\prime}, L^{\prime}\right)$ be two Kripke structures related as follows:

- $S=S^{\prime}, I=I^{\prime}, R=R^{\prime}$, and
- $L^{\prime}(s)=L(s) \cap A P^{\prime}$, where $s \in S$.

Let $\hat{M}=(\hat{S}, \hat{I}, \hat{R}, \hat{L})$ be a Kripke structure related to M^{\prime} as follows:

- $\hat{S}=2^{A P^{\prime}}$, i.e., a state $\hat{s} \in \hat{S}$ is a subset of $A P^{\prime}$,
- $\hat{I}=\left\{\hat{s} \in \hat{S} \mid \exists s \in I^{\prime} . L^{\prime}(s)=\hat{s}\right\}$, i.e., a state $\hat{s} \in \hat{S}$ is an initial state of \hat{M} if there is an initial state $s \in I^{\prime}$ such that s is labeled with \hat{s}.
- $\hat{R}=\left\{(\hat{s}, \hat{t}) \in \hat{S} \times \hat{S} \mid \exists s, t \in S . \hat{s}=L^{\prime}(s) \wedge \hat{t}=L^{\prime}(t) \wedge(s, t) \in R^{\prime}\right\}$, i.e., for each transition $(\hat{s}, \hat{t}) \in \hat{R}$ there are states $s, t \in S^{\prime}$ such that there is a transition from s to t and s is labeled with \hat{s} and t is labeled with \hat{t},
- $\hat{L}(\hat{s})=\hat{s}$ for all $\hat{s} \in \hat{S}$, i.e., each state $\hat{s} \in \hat{S}$ is labeled with the atomic propositions it contains.
(a) Prove that for any $A C T L$ formula φ over propositions from $A P^{\prime}$ the following holds:

$$
M \models \varphi \text { if and only if } M^{\prime} \models \varphi
$$

Hint: Use the semantics of ACTL. You can either use an induction on the structure of the formula (structural induction) or an induction on the formula length.
(b) Prove that for any ACTL formula φ over propositions from $A P^{\prime}$ the following holds:

$$
\text { If } \hat{M} \models \varphi \text {, then } M^{\prime} \models \varphi
$$

Hint: You can use the following theorem from the lecture:
Let M_{1} and M_{2} be Kripke structures such that $M_{1} \preceq M_{2}$. Let φ be an ACTL* formula. If $M_{2} \models \varphi$, then $M_{1} \models \varphi$.

