6.0/4.0 VU Formale Methoden der Informatik 185.291 SS $2012 \quad 19$ October 2012				
$\underbrace{}_{\substack{\text { Kennaaht } \\ \text { (study } \text { id) }}}$	$\underbrace{\text { cer }}_{\substack{\text { Matrikelaummer } \\ \text { (student id) }}}$	Familienname (family name)	Vorname (first name)	$\underbrace{\substack{\text { Gruppe } \\ \text { (verson) }}}$

1.) Consider the following problem:

PAIRS

INSTANCE: A program Π such that Π takes as input a pair of strings and outputs true or false. It is guaranteed that Π terminates on any input.
QUESTION: Does there exist a pair $\left(I_{1}, I_{2}\right)$ of strings such that Π terminates on $\left(I_{1}, I_{2}\right)$ with output value true? That is, does there exist I_{1}, I_{2} such that $\Pi\left(I_{1}, I_{2}\right)=$ true ?

Prove that the problem PAIRS is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for PAIRS) and argue that it is correct.
(15 points)
2.) (a) Given the following circuit:

- Apply Tseitin's transformation to it, to obtain a set \mathcal{D} of clauses that encodes the same function as the circuit.
- Describe in your own words (not as a formula) what the circuit computes.

Hint: For the translation of $\operatorname{XOR}(\oplus)$, you may use that
$(a \oplus b) \equiv(a \vee b) \wedge(\neg a \vee \neg b)$.
(6 points)
(b) Consider a simplified variant of Tseitin's transformation: let φ be a propositional formula, let $\Sigma(\varphi)$ be the set of all subformulas of φ, and let ℓ_{φ} be the label for φ. Then, the result of simplified Tseitin's transformation is the formula:

$$
\lambda=\left(\bigwedge_{\psi \in \Sigma(\varphi)}\left(\ell_{\psi} \leftrightarrow \psi\right)\right) \rightarrow \ell_{\varphi}
$$

Prove: λ is valid if and only if φ is valid.
3.) (a) Show that the following version of the 'logical consequence'-rule is not sound.

$$
\frac{F \Rightarrow F^{\prime} \quad\{F\} p\{G\}}{\left\{F^{\prime}\right\} p\{G\}}
$$

In words, the rule states: If $F \Rightarrow F^{\prime}$ is a valid formula and if the correctness assertion $\{F\} p\{G\}$ is true regarding partial/total correctness, then the assertion $\left\{F^{\prime}\right\} p\{G\}$ is also true regarding partial/total correctness. Show that this is not necessarily the case, by giving a counter-example; argue why it is a counter-example.
(5 points)
(b) Show that the following correctness assertion is totally correct.

Hint: Depending on how you choose the variant, use one of the following annotation rules:
while e do \cdots od $\mapsto\{\operatorname{Inv}\}$ while e do $\left\{\operatorname{Inv} \wedge e \wedge t=t_{0}\right\} \cdots\left\{\operatorname{Inv} \wedge 0 \leq t<t_{0}\right\} \circ \mathrm{d}\{\operatorname{Inv} \wedge \neg e\}$
while e do \cdots od $\mapsto\{\operatorname{Inv}\}$ while e do $\left\{\operatorname{Inv} \wedge e \wedge t=t_{0}\right\} \cdots\left\{\operatorname{Inv} \wedge\left(e \Rightarrow 0 \leq t<t_{0}\right)\right\} \circ \operatorname{din}\{\operatorname{Inv} \wedge \neg e\}$
$\{n \geq 0\}$
$i \leftarrow 0$;
$s \leftarrow 0 ;$
$\{\operatorname{Inv}: s=i(i-1) \wedge 0 \leq i \leq n+1\}$
while $i \leq n$ do
$s \leftarrow s+2 i ;$
$i \leftarrow i+1$
od;
$\left\{s=n^{2}+n\right\}$
4.) Consider the following labeled transition system (LTS):

(a) Provide an abstraction for the LTS that uses the predicates $x>0$ and $y>0$. Please use the abbreviations p for $x>0, \bar{p}$ for $x \leq 0, q$ for $y>0, \bar{q}$ for $y \leq 0$.
(5 points)
(b) Give an ACTL formula that corresponds to the unreachability of the error location.
(2 points)
(c) Assume that the variables x and y are 8-bit integers, i.e., the variables take values in the interval $[-128,127]$. We model the labeled transition system as Kripke structure $M=(S, I, R, L)$, where

- the set of atomic propositions is $A P=\{E R R O R\}$,
- $S=\{(c, x, y) \mid c \in[0,6], x \in[-128,127], y \in[-128,127]\}$,
- $I=\{(0, x, y) \mid x \in[-128,127], y \in[-128,127]\}$,
- $R=\left\{\left((c, x, y),\left(c^{\prime}, x^{\prime}, y^{\prime}\right)\right) \mid\right.$ there is a transition in the LTS from c to c^{\prime} such that x, y go to $\left.x^{\prime}, y^{\prime}\right\}$,
and
- $L(c, x, y)= \begin{cases}E R R O R & \text { if } c=6, \\ \neg E R R O R & \text { otherwise. }\end{cases}$

Show that the abstraction (a) simulates the Kripke structure M.

