6.0/4.0 VU Formale Methoden der Informatik 185.291 SS 2012 19 October 2012				
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

PAIRS

INSTANCE: A program Π such that Π takes as input a pair of strings and outputs *true* or *false*. It is guaranteed that Π terminates on any input.

QUESTION: Does there exist a pair (I_1, I_2) of strings such that Π terminates on (I_1, I_2) with output value *true*? That is, does there exist I_1, I_2 such that $\Pi(I_1, I_2) = true$?

Prove that the problem **PAIRS** is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **PAIRS**) and argue that it is correct.

(15 points)

2.) (a) Given the following circuit:

- Apply Tseitin's transformation to it, to obtain a set \mathcal{D} of clauses that encodes the same function as the circuit.
- Describe in your own words (not as a formula) what the circuit computes.
- Hint: For the translation of XOR (\oplus), you may use that $(a \oplus b) \equiv (a \lor b) \land (\neg a \lor \neg b).$

(6 points)

(b) Consider a simplified variant of Tseitin's transformation: let φ be a propositional formula, let $\Sigma(\varphi)$ be the set of all subformulas of φ , and let ℓ_{φ} be the label for φ . Then, the result of simplified Tseitin's transformation is the formula:

$$\lambda = \left(\bigwedge_{\psi \in \Sigma(\varphi)} (\ell_{\psi} \leftrightarrow \psi)\right) \to \ell_{\varphi}$$

Prove: λ is valid if and only if φ is valid.

(9 points)

3.) (a) Show that the following version of the 'logical consequence'-rule is not sound.

$$\frac{F \Rightarrow F' \quad \{F\}p\{G\}}{\{F'\}p\{G\}}$$

In words, the rule states: If $F \Rightarrow F'$ is a valid formula and if the correctness assertion $\{F\}p\{G\}$ is true regarding partial/total correctness, then the assertion $\{F'\}p\{G\}$ is also true regarding partial/total correctness. Show that this is not necessarily the case, by giving a counter-example; argue why it is a counter-example. (5 points)

(b) Show that the following correctness assertion is totally correct.

Hint: Depending on how you choose the variant, use one of the following annotation rules:

while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land 0 \le t < t_0\} \text{od} \{Inv \land \neg e\}$ while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land (e \Rightarrow 0 \le t < t_0)\} \text{od} \{Inv \land \neg e\}$

 $\begin{array}{l} \{n \geq 0 \} \\ i \leftarrow 0; \\ s \leftarrow 0; \\ \{ \textit{Inv: } s = i(i-1) \land 0 \leq i \leq n+1 \} \\ \text{while } i \leq n \text{ do} \\ s \leftarrow s+2i; \\ i \leftarrow i+1 \\ \text{od;} \\ \{ s = n^2 + n \} \end{array}$

(10 points)

4.) Consider the following labeled transition system (LTS):

- (a) Provide an abstraction for the LTS that uses the predicates x > 0 and y > 0. Please use the abbreviations p for x > 0, \bar{p} for $x \le 0$, q for y > 0, \bar{q} for $y \le 0$. (5 points)
- (b) Give an ACTL formula that corresponds to the unreachability of the error location. (2 points)
- (c) Assume that the variables x and y are 8-bit integers, i.e., the variables take values in the interval [-128, 127]. We model the labeled transition system as Kripke structure M = (S, I, R, L), where
 - the set of atomic propositions is $AP = \{ERROR\},\$
 - $S = \{(c, x, y) \mid c \in [0, 6], x \in [-128, 127], y \in [-128, 127]\},\$
 - $I = \{(0, x, y) \mid x \in [-128, 127], y \in [-128, 127]\},\$
 - $R = \{((c, x, y), (c', x', y')) \mid \text{there is a transition in the LTS from } c \text{ to } c' \text{ such that } x, y \text{ go to } x', y' \},\$

 $\quad \text{and} \quad$

• $L(c, x, y) = \begin{cases} ERROR & \text{if } c = 6, \\ \neg ERROR & \text{otherwise.} \end{cases}$

Show that the abstraction (a) simulates the Kripke structure M. (8 points)