6.0/4.0 VU Formale Methoden der Informatik 185.291 SS 2012 7 December 2012				
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

RUN-FOREVER-NO-INPUT (RFNO)

INSTANCE: A program Π such that Π takes no input.

QUESTION: Does Π not terminate, i.e. does Π run forever?

By providing a reduction from an undecidable problem to **RFNO**, prove that **RFNO** is undecidable. Argue formally that your reduction is correct.

Hint: If a problem \mathcal{P} is undecidable, then its complement $\overline{\mathcal{P}}$ is also undecidable.

(15 points)

2.) (a) Assume fmiSAT is a SAT solver that uses unit-propagation (BCP) to build an implication graph (IG). Decisions are done using the DLIS heuristics, and backtracking is done using dependency-directed backtracking.

> i. Prove that the implication graph IG built by fmiSAT is acyclic at any time. (6 points)

- ii. Show that in a conflict graph the first UIP is uniquely defined, i.e., there is exactly one node in the implication graph which is a first UIP. (5 points)
- (b) Use Ackermann's reduction and translate

$$\varphi: \quad F(x_1) = F(a) \to G(F(a), a) = G(F(x_1), b) \land F(F(a)) \neq F(x_1)$$

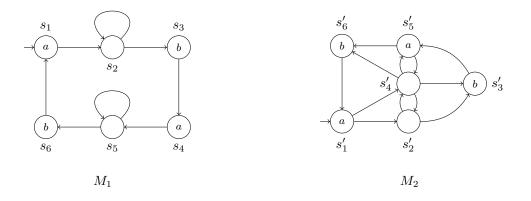
to a validity-equivalent E-formula φ^E .

(4 points)

- 3.) (a) Determine the strongest postcondition of the weakest liberal precondition of an assignment statement, i.e., compute sp(wlp(v := e, G), v := e). Why is it different from G? Remember the following properties of wlp and sp: wlp(v := e, G) = G[v/e] sp(F, v := e) = ∃v' (F[v/v'] ∧ v = e[v/v']) (5 points)
 - (b) Show that the following correctness assertion is totally correct. Depending on how you choose the variant, use one of the following annotation rules: while $e \operatorname{do} \cdots \operatorname{od} \mapsto \{\operatorname{Inv} \}$ while $e \operatorname{do} \{\operatorname{Inv} \land e \land t = t_0 \} \cdots \{\operatorname{Inv} \land 0 \le t < t_0 \} \operatorname{od} \{\operatorname{Inv} \land \neg e \}$ while $e \operatorname{do} \cdots \operatorname{od} \mapsto \{\operatorname{Inv} \}$ while $e \operatorname{do} \{\operatorname{Inv} \land e \land t = t_0 \} \cdots \{\operatorname{Inv} \land (e \to 0 \le t < t_0) \} \operatorname{od} \{\operatorname{Inv} \land \neg e \}$

 $\{ 1: x \ge 0 \}$ z := x;y := 0; $\{ Inv: x = y + z \land z \ge 0 \}$ $while z \neq 0 do$ y := y + 1;z := z - 1od $\{ 2: x = y \}$

4.) Simulation.



- (a) Show that M_2 simulates M_1 , i.e., that $M_1 \leq M_2$. (6 points)
- (b) For Kripke structures M_1 and M_2 given above, provide an LTL formula φ such that $M_1 \models \varphi$ but $M_2 \not\models \varphi$. Justify why $M_1 \models \varphi$ and $M_2 \not\models \varphi$ hold, respectively. (6 points)
- (c) Show that the following theorem for ACTL^\star does not hold for all CTL^\star formulas.

Theorem.

Let φ be an ACTL^{*} formula and let M_1, M_2 be Kripke structures satisfying $M_1 \leq M_2$. Then, $M_2 \models \varphi$ implies $M_1 \models \varphi$.

Hint: Give a CTL^* formula which contradicts the theorem for M_1 and M_2 and explain why this formula is a counterexample to the theorem. (3 points)