6.0/4.0 VU Formale Methoden der Informatik 18 October 2013

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Provide a reduction from 3-COLORABILITY to 4-COLORABILITY, and prove that your reduction is correct.

Hint: For the reduction it suffices to introduce one additional vertex to the input graph.
(15 points)
2.) (a) Let $G^{E}\left(\varphi^{E}\right)$ be the following equality graph for φ^{E} in NNF:

What are the smallest formulas in NNF represented by $G^{E}\left(\varphi^{E}\right)$?
(3 points)
(b) We define a syntax variant V_{1} for E-logic as follows:

$$
\begin{aligned}
\text { formula } & ::=\text { atom } \mid \neg \text { atom } \mid(\text { formula }) \mid \text { formula } \wedge \text { formula } \mid \text { formula } \vee \text { formula } \\
\text { atom } & ::=\text { term } \doteq \text { term } \mid \text { Boolean variable } \\
\text { term } & ::=\text { identifier } \mid \text { constant }
\end{aligned}
$$

We define a syntax variant V_{2} for E-logic as follows:

$$
\begin{aligned}
\text { formula } & ::=\text { atom } \mid \neg \text { atom } \mid \text { (formula) } \mid \text { formula } \wedge \text { formula } \mid \text { formula } \vee \text { formula } \\
\text { atom } & ::=\text { term } \doteq \text { term } \\
\text { term } & ::=\text { identifier } \mid \text { constant }
\end{aligned}
$$

1) Given an E-formula φ_{1}^{E} (according to syntax V_{1}), devise a translation that takes φ_{1}^{E} and results in an E-formula φ_{2}^{E} (according to syntax V_{2}) such that φ_{1}^{E} and φ_{2}^{E} are equi-satisfiable.
2) Prove: If φ_{1}^{E} is E-satisfiable, then φ_{2}^{E} is E-satisfiable.
(12 points)
3.) Consider the following modified while-rule:

$$
\frac{\{\operatorname{Inv}\} p\{\operatorname{Inv}\}}{\{\operatorname{Inv}\} \text { while } e \text { do } p \text { od }\{\operatorname{Inv}\}} \mathrm{mw}
$$

(a) Show that this rule is admissible regarding partial correctness.
(b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace the regular while-rule by the modified one.
(10 points)

A rule $\frac{X_{1} \cdots X_{n}}{\{F\} p\{G\}}$ is admissible regarding partial correctness, if the conclusion $\{F\} p\{G\}$ is partially correct whenever all premises X_{1}, \ldots, X_{n} are valid formulas/partially correct assertions.

Hoare calculus for partial correctness:

$$
\begin{array}{cc}
\{F\} \text { skip }\{F\} & \frac{\{F \wedge e\} p\{G\} \quad\{F \wedge \neg e\} q\{G\}}{\{F\} \text { if } e \text { then } p \text { else } q \text { fi }\{G\}} \\
\{F\} \text { abort }\{G\} & \frac{\{\operatorname{Inv} \wedge e\} p\{\operatorname{Inv}\}}{} \\
\{F[v / e]\} v \leftarrow e\{F\} & \frac{\{\operatorname{Inv}\} \text { while } e \text { do } p \text { od }\{\operatorname{Inv} \wedge \neg e\}}{} \\
\frac{\{F\} p\{G\}\{G\} q\{H\}}{\{F\} p ; q\{H\}} & \frac{F \Rightarrow F^{\prime}\left\{F^{\prime}\right\} p\left\{G^{\prime}\right\} \quad G^{\prime} \Rightarrow G}{\{F\} p\{G\}}
\end{array}
$$

4.) Simulation

Let $M_{1}=\left(S_{1}, I_{1}, R_{1}, L_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, R_{2}, L_{2}\right)$ be two Kripke structures.

Simulation

Remember, a relation $H \subseteq S_{1} \times S_{2}$ is a simulation relation if for each $\left(s, s^{\prime}\right) \in H$ holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H$.

Further remember, M_{2} simulates M_{1}, in signs $M_{1} \leq M_{2}$, if there is a simulation relation $H \subseteq S_{1} \times S_{2}$ such that

- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H$.

In the following, we say that H witnesses the similarity of M_{1} and M_{2} in case H is a simulation relation from M_{1} to M_{2} that satisfies the condition stated above.
(a) Show that there is no simulation relation H that witnesses $M_{1} \leq M_{2}$.

(3 points)
(b) Prove the following equivalence of LTL formulae:

$$
(\mathbf{G} a) \rightarrow(\mathbf{F} b) \equiv a \mathbf{U}(b \vee \neg a)
$$

(4 points)
(c) Prove that the following LTL formulae are not equivalent:

$$
(\mathbf{F} a) \wedge(\mathbf{X G} a) \not \equiv \mathbf{F} a
$$

(d) Consider the following program stated in form of a labeled transition system:

i. Provide an abstraction for the labeled transition system that uses the predicates $x>0, y>0$
ii. Give an error trace in the abstraction
iii. State an additional predicate which can be used to refine the abstraction in order to get rid of the error state. Don't draw the new abstraction.

