6.0/4.0 VU Formale Methoden der Informatik 18 October 2013

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)
				Α

1.) Provide a reduction from 3-COLORABILITY to 4-COLORABILITY, and prove that your reduction is correct.

Hint: For the reduction it suffices to introduce one additional vertex to the input graph. (15 points)

2.) (a) Let $G^E(\varphi^E)$ be the following equality graph for φ^E in NNF:

$$x \stackrel{}{\longleftarrow} y$$

What are the smallest formulas in NNF represented by $G^E(\varphi^E)$? (3 points)

(b) We define a syntax variant V_1 for E-logic as follows:

formula ::= atom | \neg atom | (formula) | formula \land formula | formula \lor formula atom ::= term \doteq term | *Boolean variable* term ::= identifier | constant

We define a syntax variant V_2 for E-logic as follows:

formula ::= atom | \neg atom | (formula) | formula \land formula | formula \lor formula atom ::= term \doteq term term ::= identifier | constant

- 1) Given an E-formula φ_1^E (according to syntax V_1), devise a translation that takes φ_1^E and results in an E-formula φ_2^E (according to syntax V_2) such that φ_1^E and φ_2^E are equi-satisfiable.
- 2) Prove: If φ_1^E is E-satisfiable, then φ_2^E is E-satisfiable.

(12 points)

3.) Consider the following modified while-rule:

$$\frac{\{ Inv \} p \{ Inv \}}{\{ Inv \} \text{ while } e \text{ do } p \text{ od } \{ Inv \}} \text{ mw}$$

- (a) Show that this rule is admissible regarding partial correctness. (5 points)
- (b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace the regular while-rule by the modified one. (10 points)

A rule $\frac{X_1 \cdots X_n}{\{F\}_p \{G\}}$ is admissible regarding partial correctness, if the conclusion $\{F\}_p \{G\}$ is partially correct whenever all premises X_1, \ldots, X_n are valid formulas/partially correct assertions.

Hoare calculus for partial correctness:			
$ \left\{ \begin{array}{l} F \end{array} \right\} {\rm skip} \left\{ \begin{array}{l} F \end{array} \right\} \\ \left\{ \begin{array}{l} F \end{array} \right\} {\rm abort} \left\{ \begin{array}{l} G \end{array} \right\} \\ \left\{ \begin{array}{l} F[v/e] \end{array} \right\} v \leftarrow e \left\{ \begin{array}{l} F \end{array} \right\} \\ \left\{ \begin{array}{l} F \end{array} \right\} p \left\{ \begin{array}{l} G \end{array} \right\} & \left\{ \begin{array}{l} G \end{array} \right\} q \left\{ \begin{array}{l} H \end{array} \right\} \end{array} $	$ \frac{\{F \land e\} p \{G\} \{F \land \neg e\} q \{G\}}{\{F\} \text{ if } e \text{ then } p \text{ else } q \text{ fi} \{G\}} $ $ \frac{\{Inv \land e\} p \{Inv\}}{\{Inv\} \text{ while } e \text{ do } p \text{ od } \{Inv \land \neg e\}} $ $ F \Rightarrow F' \{F'\} p \{G'\} G' \Rightarrow G $		
$\set{F}{p;q \set{H}}$	$\frac{\left\{F\right\}p\left\{G\right\}}{\left\{F\right\}p\left\{G\right\}}$		

4.) Simulation

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures.

Simulation

Remember, a relation $H \subseteq S_1 \times S_2$ is a simulation relation if for each $(s, s') \in H$ holds:

• $L_1(s) = L_2(s')$, and

 M_1

• for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H$.

Further remember, M_2 simulates M_1 , in signs $M_1 \leq M_2$, if there is a simulation relation $H \subseteq S_1 \times S_2$ such that

• for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$.

In the following, we say that H witnesses the similarity of M_1 and M_2 in case H is a simulation relation from M_1 to M_2 that satisfies the condition stated above.

(a) Show that there is no simulation relation H that witnesses $M_1 \leq M_2$.

 M_2

(3 points)

(b) Prove the following equivalence of LTL formulae:

 $(\mathbf{G}a) \to (\mathbf{F}b) \equiv a\mathbf{U}(b \lor \neg a)$

(4 points)

(c) Prove that the following LTL formulae are not equivalent:

 $(\mathbf{F}a) \wedge (\mathbf{XG}a) \not\equiv \mathbf{F}a$

(2 points)

(d) Consider the following program stated in form of a labeled transition system:

- i. Provide an abstraction for the labeled transition system that uses the predicates $x>0,\,y>0$
- ii. Give an error trace in the abstraction
- iii. State an additional predicate which can be used to refine the abstraction in order to get rid of the error state. Don't draw the new abstraction.

(6 points)