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1.) Provide a reduction from 3-COLORABILITY to 4-COLORABILITY, and prove that
your reduction is correct.

Hint: For the reduction it suffices to introduce one additional vertex to the input graph.
(15 points)

2.) (a) Let GE(ϕE) be the following equality graph for ϕE in NNF:

x y

What are the smallest formulas in NNF represented by GE(ϕE)? (3 points)

(b) We define a syntax variant V1 for E-logic as follows:

formula ::= atom | ¬atom | (formula) | formula ∧ formula | formula ∨ formula

atom ::= term
.
= term | Boolean variable

term ::= identifier | constant

We define a syntax variant V2 for E-logic as follows:

formula ::= atom | ¬atom | (formula) | formula ∧ formula | formula ∨ formula

atom ::= term
.
= term

term ::= identifier | constant

1) Given an E-formula ϕE
1 (according to syntax V1), devise a translation that takes

ϕE
1 and results in an E-formula ϕE

2 (according to syntax V2) such that ϕE
1 and ϕE

2

are equi-satisfiable.

2) Prove: If ϕE
1 is E-satisfiable, then ϕE

2 is E-satisfiable.

(12 points)

3.) Consider the following modified while-rule:

{ Inv } p { Inv }
{ Inv }while e do p od { Inv }

mw

(a) Show that this rule is admissible regarding partial correctness. (5 points)

(b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace
the regular while-rule by the modified one. (10 points)

A rule
X1 · · ·Xn

{F } p {G } is ad-

missible regarding partial
correctness, if the conclu-
sion {F } p {G } is par-
tially correct whenever all
premises X1, . . . , Xn are
valid formulas/partially
correct assertions.

Hoare calculus for partial correctness:

{F } skip {F }
{F } abort {G }

{F [v/e] } v ← e {F }
{F } p {G } {G } q {H }

{F } p; q {H }

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

{ Inv ∧ e } p { Inv }
{ Inv }while e do p od { Inv ∧ ¬e }
F ⇒ F ′ {F ′ } p {G′ } G′ ⇒ G

{F } p {G }



4.) Simulation

Let M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) be two Kripke structures.

Simulation

Remember, a relation H ⊆ S1 × S2 is a simulation relation if for each (s, s′) ∈ H holds:

• L1(s) = L2(s′), and

• for each (s, t) ∈ R1 there is a (s′, t′) ∈ R2 such that (t, t′) ∈ H.

Further remember, M2 simulates M1, in signs M1 ≤ M2, if there is a simulation rela-
tion H ⊆ S1 × S2 such that

• for each initial state s ∈ I1 there is an initial state s′ ∈ I2 with (s, s′) ∈ H.

In the following, we say that H witnesses the similarity of M1 and M2 in case H is a
simulation relation from M1 to M2 that satisfies the condition stated above.

(a) Show that there is no simulation relation H that witnesses M1 ≤M2.
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(3 points)

(b) Prove the following equivalence of LTL formulae:

(Ga)→ (Fb) ≡ aU(b ∨ ¬a)

(4 points)

(c) Prove that the following LTL formulae are not equivalent:

(Fa) ∧ (XGa) 6≡ Fa

(2 points)

(d) Consider the following program stated in form of a labeled transition system:

0

1

2

3

4

ERROR

x := 1
y := 1

assume(x < 100)
x := x + 1
y := y + x

assume(x ≥ 100)

assume(y ≥ 100)

assume(y < 100)



i. Provide an abstraction for the labeled transition system that uses the predicates
x > 0, y > 0

ii. Give an error trace in the abstraction

iii. State an additional predicate which can be used to refine the abstraction in order
to get rid of the error state. Don’t draw the new abstraction.

(6 points)


