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1.) Consider the following decision problem:

LATIN-SQUARE

INSTANCE: A set S = {s1, . . . , sn} of n different symbols.

QUESTION: Can we fill an n× n matrix L with the n symbols of S, such that each symbol
occurs exactly once in each row and exactly once in each column?

Example: A solution to LATIN-SQUARE with S = {A,B,C} is presented below:

L3,3 =

A B C
C A B
B C A


Provide a polynomial time reduction from LATIN-SQUARE to SAT such that the result-
ing formula is in conjunctive normal form (CNF). Additionally explain the intuition of your
reduction, i.e., explain the intended meaning of the propositional variables and of the clauses
in the CNF formula.

(15 points)

2.) (a) First define the concept of a T -interpretation. Then use it to define the following:

i. the T -satisfiability of a formula;

ii. the T -validity of a formula.

Additionally define the completeness of a theory T and give an example for a complete
and an incomplete theory.

(5 points)

(b) Prove that the following formula ϕ is T E
cons -valid:

ϕ : ¬atom(x) ∧ car(x)
.
= y ∧ cdr(x)

.
= z → x

.
= cons(y, z)

Hints: Recall the axiom of construction in T E
cons :

¬atom(x)→ cons(car(x), cdr(x))
.
= x

(10 points)

3.) Consider the following modified while-rule:

{ Inv } p { Inv }
{ Inv }while e do p od { Inv }

mw

(a) Show that this rule is admissible regarding partial correctness. (5 points)

(b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace
the regular while-rule by the modified one. (10 points)



A rule
X1 · · ·Xn

{F } p {G } is ad-

missible regarding partial
correctness, if the conclu-
sion {F } p {G } is par-
tially correct whenever all
premises X1, . . . , Xn are
valid formulas/partially
correct assertions.

Hoare calculus for partial correctness:

{F } skip {F }
{F } abort {G }

{F [v/e] } v ← e {F }
{F } p {G } {G } q {H }

{F } p; q {H }

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

{ Inv ∧ e } p { Inv }
{ Inv }while e do p od { Inv ∧ ¬e }
F ⇒ F ′ {F ′ } p {G′ } G′ ⇒ G

{F } p {G }

4.) Consider the following labeled transition system:

0

1

2

3

4

END

5

ERROR

x := 1
y := 1

assume(x < 100)
x := x + 1
y := y + x

assume(x ≥ 100)

assume(y ≥ 100)

assume(y < 100)

We model the labeled transition system as infinite Kripke structure M = (S, I,R, L), where

• the set of atomic propositions is AP = {l0 , l1 , l2 , l3 , l4 , l5},
• S = {(c, x, y) | c ∈ [0, 5], x ∈ Z, y ∈ Z},
• I = {(0, x, y) | x ∈ Z, y ∈ Z},
• R = {((c, x, y), (c′, x′, y′)) | there is a transition in the LTS from c to c′ such that x, y go to x′, y′},

and

• L(c, x, y) = lc

(a) i. Give an LTL formula stating that the error location is unreachable

ii. Give an LTL formula stating that if location 2 is visited, location 1 is visited in the
next step

iii. Give an LTL formula stating that either location 3 is reached or location 1 is reached
infinitely often

Hint: you can refer to program locations via the atomic propositions in AP .

(3 points)

(b) Provide an abstraction for the labeled transition system that uses the predicates AP
(see above) for modeling the program counter and the predicates x ≥ 0, y ≥ x and
x ≥ 100.

(5 points)

(c) Show that the abstraction (b) simulates the Kripke structure M .
Hint: Define a simulation relation H and show that H is indeed a simulation relation.

(5 points)

(d) Prove that M satisfies the LTL formulae from (a).
Hint: Show that the abstraction from (b) satisfies the formulae and apply a theorem
from the lecture using the result from (c)

(2 points)


