6.0/4.0 VU Formale Methoden der Informatik 185.291 WS 2013 09 May 2014				
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

SOME-HALTS

INSTANCE: A triple (Π_1, Π_2, I) , where I is string and Π_1, Π_2 are programs that take a string as input.

QUESTION: Is it true that Π_1 halts on I or Π_2 halts on I?

By providing a reduction from **HALTING** to **SOME-HALTS**, prove that **SOME-HALTS** is undecidable. Argue formally that your reduction is correct.

(15 points)

- 2.) (a) First define the concept of a \mathcal{T} -interpretation. Then use it to define the following:
 - i. the \mathcal{T} -satisfiability of a formula;
 - ii. the \mathcal{T} -validity of a formula.

Additionally define the completeness of a theory \mathcal{T} and give an example for a complete theory and an incomplete theory. (5 points)

(b) Prove that the following formula φ is \mathcal{T}_{cons}^{E} -valid:

 $\varphi: \qquad cons(a,b) \doteq cons(c,d) \rightarrow a \doteq c \land b \doteq d$

Hints: Please be precise! Recall the axioms of left and right projection in \mathcal{T}_{cons}^{E} :

$car(cons(x,y)) \doteq x$	(left projection)
$cdr(cons(x,y)) \doteq y$	(right projection)

(10 points)

3.) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider k as its input and m as its output.

Hints: Use the formula $l = (m+1)^3 \land 0 \le m^3 \le k$ as loop invariant. Depending on how you choose the variant, use one of the following annotation rules:

while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land 0 \le t < t_0\} \text{od} \{Inv \land \neg e\}$ while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land (e \to 0 \le t < t_0)\} \text{od} \{Inv \land \neg e\}$

 $\{ k \ge 0 \} \\ l := 1; \\ m := 0; \\ \text{while } l \le k \text{ do} \\ n := 3 * m + 6; \\ m := m + 1; \\ l := l + m * n + 1 \\ \text{od} \\ \{ m^3 \le k < (m + 1)^3 \}$

- 4.) Simulation and Bisimulation
 - (a) Let K_1 and K_2 be the two Kripke structures given below. Check which of the relations $K_1 \leq K_2, K_1 \geq K_2, K_1 \equiv K_2$ hold on K_1 and K_2 . Justify your answer.

- (b) Show that simulation is a transitive relation: Given any 3 Kripke structures $K_1 = \{S_1, R_1, L_1\}, K_2 = \{S_2, R_2, L_2\}$ and $K_3 = \{S_3, R_3, L_3\}$ such that $K_1 \leq K_2$ and $K_2 \leq K_3$, it holds that $K_1 \leq K_3$. (8 points)
- (c) Consider the following Kripke Structure:

Determine on which states the LTL-formula $G(a \cup b)$ holds.

(2 points)