$\begin{array}{c}\text { 6.0/4.0 VU } \\ \text { 185.291 }\end{array}$						$\begin{array}{c}\text { Formale Methoden der Informatik } \\ \text { WS 2013 }\end{array}$	
09 May 2014							

1.) Consider the following problem:

SOME-HALTS

INSTANCE: A triple $\left(\Pi_{1}, \Pi_{2}, I\right)$, where I is string and Π_{1}, Π_{2} are programs that take a string as input.

QUESTION: Is it true that Π_{1} halts on I or Π_{2} halts on I ?
By providing a reduction from HALTING to SOME-HALTS, prove that SOME-HALTS is undecidable. Argue formally that your reduction is correct.
2.) (a) First define the concept of a \mathcal{T}-interpretation. Then use it to define the following:
i. the \mathcal{T}-satisfiability of a formula;
ii. the \mathcal{T}-validity of a formula.

Additionally define the completeness of a theory \mathcal{T} and give an example for a complete theory and an incomplete theory.
(5 points)
(b) Prove that the following formula φ is $\mathcal{T}_{\text {cons }}^{E}$-valid:

$$
\varphi: \quad \operatorname{cons}(a, b) \doteq \operatorname{cons}(c, d) \rightarrow a \doteq c \wedge b \doteq d
$$

Hints: Please be precise! Recall the axioms of left and right projection in $\mathcal{T}_{\text {cons }}^{E}$:

$$
\begin{array}{lr}
\operatorname{car}(\operatorname{cons}(x, y)) \doteq x & \text { (left projection) } \\
\operatorname{cdr}(\operatorname{cons}(x, y)) \doteq y & \text { (right projection) }
\end{array}
$$

(10 points)
3.) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider k as its input and m as its output.
Hints: Use the formula $l=(m+1)^{3} \wedge 0 \leq m^{3} \leq k$ as loop invariant. Depending on how you choose the variant, use one of the following annotation rules:
while e do \cdots od $\mapsto\{I n v\}$ while e do $\left\{\operatorname{Inv} \wedge e \wedge t=t_{0}\right\} \cdots\left\{\operatorname{Inv} \wedge 0 \leq t<t_{0}\right\} \circ \operatorname{din}\{\operatorname{Inv} \wedge \neg e\}$
while e do \cdots od $\mapsto\{\operatorname{Inv}\}$ while e do $\left\{\operatorname{Inv\wedge e\wedge t=t_{0}\} \cdots \{ \operatorname {Inv}\wedge (e\rightarrow 0\leq t<t_{0})\} \circ d\{ \operatorname {Inv}\wedge \neg e\} }\right.$
$\{k \geq 0\}$
$l:=1$;
$m:=0$;
while $l \leq k$ do
$n:=3 * m+6 ;$
$m:=m+1$;
$l:=l+m * n+1$
od
$\left\{m^{3} \leq k<(m+1)^{3}\right\}$
4.) Simulation and Bisimulation
(a) Let K_{1} and K_{2} be the two Kripke structures given below. Check which of the relations $K_{1} \leq K_{2}, K_{1} \geq K_{2}, K_{1} \equiv K_{2}$ hold on K_{1} and K_{2}. Justify your answer.

(5 points)
(b) Show that simulation is a transitive relation: Given any 3 Kripke structures $K_{1}=$ $\left\{S_{1}, R_{1}, L_{1}\right\}, K_{2}=\left\{S_{2}, R_{2}, L_{2}\right\}$ and $K_{3}=\left\{S_{3}, R_{3}, L_{3}\right\}$ such that $K_{1} \leq K_{2}$ and $K_{2} \leq$ K_{3}, it holds that $K_{1} \leq K_{3}$.
(8 points)
(c) Consider the following Kripke Structure:

Determine on which states the LTL-formula $\mathrm{G}(a \mathrm{U} b)$ holds.
(2 points)

