6.0/4.0 VU Formale Methoden der Informatik (185.291) July 4, 2014

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

GRAPH-FORMULA (GF) INSTANCE: A pair (G, φ) , where G is an undirected graph and φ is a propositional formula.

QUESTION: Is it the case that G is 3-colorable or φ is satisfiable?

By providing a reduction from an NP-complete problem, prove that **GF** is an NP-hard problem. Argue formally that your reduction is correct. (15 points)

2.) (a) Apply the Sparse Method including preprocessing to the *E*-formula φ to obtain an equi-satisfiable formula ψ in propositional logic.

$$\varphi: \qquad \left[(x_1 \doteq x_5 \land x_5 \doteq x_3) \lor (x_1 \neq x_2 \land x_2 \doteq x_3) \right] \land (x_5 \doteq x_4 \to x_4 \neq x_3)$$

Please indicate and justify briefly the steps in the translation!

(6 points)

(b) Recall that resolution is defined as follows: given two clauses

 $C_1 = (A_1 \lor \ldots \lor A_i \lor \ldots \lor A_n)$ and $C_2 = (B_1 \lor \ldots \lor B_j \lor \ldots \lor B_m)$

such that, for some i with $1 \leq i \leq n$, $A_i = \neg B_j$, the resolvent of C_1 and C_2 on A_i is the clause

$$res(C_1, C_2, A_i) = (A_1 \lor \ldots \lor A_{i-1} \lor A_{i+1} \lor \ldots \lor A_n \lor B_1 \ldots \lor B_{j-1} \lor B_{j+1} \lor \ldots \lor B_m).$$

Now let F be a set of clauses and a let $F' = F \cup \{res(C_1, C_2, A_i)\}$ be the extension of F by a resolvent of some clauses $C_1, C_2 \in F$ where A_i is a literal occurring positively in C_1 and negatively in C_2 .

Prove: If F is valid, then F' is valid.

(9 points)

3.) Consider the following modified if-rule:

$$\frac{\{F\}p\{G\} \quad \{F \land \neg e\}q\{G\}}{\{F\} \text{ if } e \text{ then } p \text{ else } q \text{ fi}\{G\}} \text{ if}'$$

- (a) Show that this rule is admissible regarding partial correctness.
- (5 points)
- (b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace the regular if-rule by the modified one. (10 points)

A rule $\frac{X_1 \cdots X_n}{\{F\} p \{G\}}$ is ad-	Hoare calculus for partial correctness:		
$ \begin{array}{c} F \end{array} \left\{ F \right\} p \left\{ G \right\} \\ missible \ regarding \ partial \end{array} $	$\{F\}$ skip $\{F\}$	$\{F \land e\} p \{G\} \{F \land \neg e\} q \{G\}$	
correctness, if the conclu-	$\{F\}$ abort $\{G\}$	$\{F\}$ if e then p else q fi $\{G\}$	
sion $\{F\}p\{G\}$ is par-		$\set{\mathit{Inv} \land e}{p}{\mathit{Inv}}$	
tially correct whenever	$\{ F[v/e] \} v := e \{ F \}$	$\overline{\{Inv\}}$ while $e \text{ do } p \text{ od } \{Inv \land \neg e\}$	
all premises X_1, \ldots, X_n are valid formulas/par-	$\{F\}p\{G\} \{G\}q\{H\}$	$F \to F' \{F'\} p\{G'\} G' \to G$	
tially correct assertions.	$\set{F}{p;q \{H\}}$	$\frac{F}{F} p \{G\}$	

4.) Simulation

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures.

Simulation

Remember, a relation $H \subseteq S_1 \times S_2$ is a simulation relation if for each $(s, s') \in H$ holds:

- $L_1(s) = L_2(s')$, and
- for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H$.

Further remember, M_2 simulates M_1 , in signs $M_1 \leq M_2$, if there is a simulation relation $H \subseteq S_1 \times S_2$ such that

• for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$.

In the following, we say that H witnesses the similarity of M_1 and M_2 in case H is a simulation relation from M_1 to M_2 that satisfies the condition stated above.

(a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below (M_1 on the left, M_2 on the right), the initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

(3 points)

(b) We consider an extension of LTL with a yesterday operator \mathbf{Y} where $\mathbf{Y}\phi$ is true if and only if ϕ was true in the previous state. Moreover, in the first state of a path, $\mathbf{Y}\phi$ is always false.

Consider the following Kripke structure:

- Determine on which states s_i the following formulae hold:
 - i. **FY**a
 - ii. **YF**a

iii. $\mathbf{G}(\mathbf{Y}a \rightarrow b)$

iv. $\mathbf{G}(a \rightarrow \mathbf{Y}b)$

- Give an equivalent LTL formula (i.e. without \mathbf{Y}) for formula (iv), i.e., $\mathbf{G}(a \rightarrow \mathbf{Y}b)$. (5 points)
- (c) Let M = (S, R, L) be a Kripke structure. We define a Kripke structure M' = (S', R', L') by
 - $S' = \{(s,i) \mid s \in S \text{ and } i \in \{1,2,3\}\}$, i.e., for every state s in S there are three states (s,1), (s,2), (s,3) in S',
 - $R' = \{((s, 1), (s, 2)) \mid s \in S\} \cup \{((s, 2), (s, 3)) \mid s \in S\} \cup \{((s, 3), (t, 1)) \mid (s, t) \in R\},\$ i.e., for every state $s \in S$ there are edges from (s, 1) to (s, 2) and from (s, 2) to (s, 3) in R', and for every edge (s, t) in R there is an edge from (s, 3) to (t, 1) in R',
 - L'((s,i)) = L(s) for all $i \in \{1,2,3\}$ and all $s \in S$, i.e., the label of state (s,i) in M' agrees with the label of state s in M.

Show that for all states $s \in S$, all $i \in \{1, 2, 3\}$ and all LTL formulae ϕ without the **X** operator, it holds that $M, s \models \phi$ iff $M', (s, i) \models \phi$.

Hint: You may want to use induction on the structure of the formula ϕ . (7 points)