6.0/4.0 VU Formale Methoden der Informatik (185.291) July 4, 2014

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

GRAPH-FORMULA (GF)

INSTANCE: A pair (G, φ), where G is an undirected graph and φ is a propositional formula.

QUESTION: Is it the case that G is 3 -colorable or φ is satisfiable?
By providing a reduction from an NP-complete problem, prove that GF is an NP-hard problem. Argue formally that your reduction is correct.
(15 points)
2.) (a) Apply the Sparse Method including preprocessing to the E-formula φ to obtain an equi-satisfiable formula ψ in propositional logic.

$$
\varphi: \quad\left[\left(x_{1} \doteq x_{5} \wedge x_{5} \doteq x_{3}\right) \vee\left(x_{1} \neq x_{2} \wedge x_{2} \doteq x_{3}\right)\right] \wedge\left(x_{5} \doteq x_{4} \rightarrow x_{4} \neq x_{3}\right)
$$

Please indicate and justify briefly the steps in the translation!
(6 points)
(b) Recall that resolution is defined as follows: given two clauses

$$
C_{1}=\left(A_{1} \vee \ldots \vee A_{i} \vee \ldots \vee A_{n}\right) \quad \text { and } \quad C_{2}=\left(B_{1} \vee \ldots \vee B_{j} \vee \ldots \vee B_{m}\right)
$$

such that, for some i with $1 \leq i \leq n, A_{i}=\neg B_{j}$, the resolvent of C_{1} and C_{2} on A_{i} is the clause
$\operatorname{res}\left(C_{1}, C_{2}, A_{i}\right)=\left(A_{1} \vee \ldots \vee A_{i-1} \vee A_{i+1} \vee \ldots \vee A_{n} \vee B_{1} \ldots \vee B_{j-1} \vee B_{j+1} \vee \ldots \vee B_{m}\right)$.

Now let F be a set of clauses and a let $F^{\prime}=F \cup\left\{\operatorname{res}\left(C_{1}, C_{2}, A_{i}\right)\right\}$ be the extension of F by a resolvent of some clauses $C_{1}, C_{2} \in F$ where A_{i} is a literal occurring positively in C_{1} and negatively in C_{2}.
Prove: If F is valid, then F^{\prime} is valid.
3.) Consider the following modified if-rule:

$$
\frac{\{F\} p\{G\} \quad\{F \wedge \neg e\} q\{G\}}{\{F\} \text { if } e \text { then } p \text { else } q \text { fi }\{G\}} \text { if }^{\prime}
$$

(a) Show that this rule is admissible regarding partial correctness.
(b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace the regular if-rule by the modified one.

A rule $\frac{X_{1} \cdots X_{n}}{\{F\} p\{G\}}$ is admissible regarding partial correctness, if the conclusion $\{F\} p\{G\}$ is partially correct whenever all premises X_{1}, \ldots, X_{n} are valid formulas/partially correct assertions.

Hoare calculus for partial correctness:

$$
\begin{array}{cc}
\{F\} \text { skip }\{F\} & \frac{\{F \wedge e\} p\{G\}\{F \wedge \neg e\} q\{G\}}{\{F\} \text { if } e \text { then } p \text { else } q \text { fi }\{G\}} \\
\{F\} \text { abort }\{G\} & \frac{\{\operatorname{Inv} \wedge e\} p\{\operatorname{Inv}\}}{} \\
\{F[v / e]\} v:=e\{F\} & \frac{\{\operatorname{Inv}\} \text { while } e \text { do } p \text { od }\{\operatorname{Inv} \wedge \neg e\}}{} \\
\frac{\{F\} p\{G\}\{G\} q\{H\}}{\{F\} p ; q\{H\}} & \frac{F \rightarrow F^{\prime}\left\{F^{\prime}\right\} p\left\{G^{\prime}\right\} G^{\prime} \rightarrow G}{\{F\} p\{G\}}
\end{array}
$$

4.) Simulation

Let $M_{1}=\left(S_{1}, I_{1}, R_{1}, L_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, R_{2}, L_{2}\right)$ be two Kripke structures.

Simulation

Remember, a relation $H \subseteq S_{1} \times S_{2}$ is a simulation relation if for each $\left(s, s^{\prime}\right) \in H$ holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H$.

Further remember, M_{2} simulates M_{1}, in signs $M_{1} \leq M_{2}$, if there is a simulation relation $H \subseteq S_{1} \times S_{2}$ such that

- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H$.

In the following, we say that H witnesses the similarity of M_{1} and M_{2} in case H is a simulation relation from M_{1} to M_{2} that satisfies the condition stated above.
(a) Provide a non-empty simulation relation H that witnesses $M_{1} \leq M_{2}$, where M_{1} and M_{2} are shown below (M_{1} on the left, M_{2} on the right), the initial state of M_{1} is s_{0}, the initial state of M_{2} is t_{0} :

(b) We consider an extension of LTL with a yesterday operator \mathbf{Y} where $\mathbf{Y} \phi$ is true if and only if ϕ was true in the previous state. Moreover, in the first state of a path, $\mathbf{Y} \phi$ is always false.
Consider the following Kripke structure:

- Determine on which states s_{i} the following formulae hold:
i. FYa
ii. YFa
iii. $\mathbf{G}(\mathbf{Y a} \rightarrow \mathrm{b})$
iv. $\mathbf{G}(\mathrm{a} \rightarrow \mathbf{Y b})$
- Give an equivalent LTL formula (i.e. without $\mathbf{Y})$ for formula (iv), i.e., $\mathbf{G}(\mathrm{a} \rightarrow \mathbf{Y b})$.
(c) Let $M=(S, R, L)$ be a Kripke structure. We define a Kripke structure $M^{\prime}=\left(S^{\prime}, R^{\prime}, L^{\prime}\right)$ by
- $S^{\prime}=\{(s, i) \mid s \in S$ and $i \in\{1,2,3\}\}$, i.e, for every state s in S there are three states $(s, 1),(s, 2),(s, 3)$ in S^{\prime},
- $R^{\prime}=\{((s, 1),(s, 2)) \mid s \in S\} \cup\{((s, 2),(s, 3)) \mid s \in S\} \cup\{((s, 3),(t, 1)) \mid(s, t) \in R\}$, i.e., for every state $s \in S$ there are edges from $(s, 1)$ to $(s, 2)$ and from $(s, 2)$ to $(s, 3)$ in R^{\prime}, and for every edge (s, t) in R there is an edge from $(s, 3)$ to $(t, 1)$ in R^{\prime},
- $L^{\prime}((s, i))=L(s)$ for all $i \in\{1,2,3\}$ and all $s \in S$, i.e., the label of state (s, i) in M^{\prime} agrees with the label of state s in M.
Show that for all states $s \in S$, all $i \in\{1,2,3\}$ and all LTL formulae ϕ without the \mathbf{X} operator, it holds that $M, s \models \phi$ iff $M^{\prime},(s, i) \models \phi$.
Hint: You may want to use induction on the structure of the formula ϕ.
(7 points)

