6.0/4.0 VU Formale Methoden der Informatik (185.291) 17 October 2014

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	

1.) Consider the following two problems:

3-COLORABILITY (3-COL)

INSTANCE: An undirected graph $G=(V, E)$.
QUESTION: Does G have a 3 -coloring? That is, does there exist a function μ from vertices in V to values in $\{1,2,3\}$ such that $\mu\left(v_{1}\right) \neq \mu\left(v_{2}\right)$ for any edge $\left[v_{1}, v_{2}\right] \in E$?

UNDIRECTED GRAPH HOMOMORPHISM (HOM)

INSTANCE: A pair $\left(G_{1}, G_{2}\right)$, where $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are undirected graphs.

QUESTION: Does there exist a homomorphism from G_{1} to G_{2} ? That is, does there exist a function h from vertices in V_{1} to vertices in V_{2} such that for any edge $\left[v_{1}, v_{2}\right] \in E_{1}$ we also have $\left[h\left(v_{1}\right), h\left(v_{2}\right)\right] \in E_{2}$?

We provide next a reduction from 3-COL to HOM. Let $G=(V, E)$ be an arbitrary undirected graph (i.e., an arbitrary instance of $\mathbf{3}$-COL). From G we construct a pair (G_{1}, G_{2}) of undirected graphs. We let $G_{1}=G$ and let $G_{2}=\left(V_{2}, E_{2}\right)$ be as follows:

- $V_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$, and
- E_{2} consists of exactly the 3 (undirected) edges $\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right]$ and $\left[v_{1}, v_{3}\right]$.

Task: Prove the " \Rightarrow " direction in the proof of correctness of the reduction, i.e., prove the following statement: If G is a positive instance of $\mathbf{3} \mathbf{- C O L}$, then $\left(G_{1}, G_{2}\right)$ is a positive instance of HOM.

Note: For any property that you use in your proof, make it perfectly clear why this property holds (using e.g. "by the problem reduction", "by assumption X ", "by definition X ").
(15 points)
2.) (a) First define the concept of a \mathcal{T}-interpretation. Then use it to define the following:
i. the \mathcal{T}-satisfiability of a formula;
ii. the \mathcal{T}-validity of a formula.

Additionally define the completeness of a theory \mathcal{T} and give an example for a complete and an incomplete theory.
(5 points)
(b) Prove that the following formula φ is $\mathcal{T}_{\text {cons }}^{E}$-valid:

$$
\varphi: \quad \neg \operatorname{atom}(x) \wedge \operatorname{car}(x) \doteq y \wedge \operatorname{cdr}(x) \doteq z \rightarrow x \doteq \operatorname{cons}(y, z)
$$

Hints: Recall the axiom of construction in $\mathcal{T}_{\text {cons }}^{E}$:

$$
\begin{equation*}
\neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), c d r(x)) \doteq x \tag{5points}
\end{equation*}
$$

(c) $\mathcal{T}_{\text {cons }}^{E}$ is a combined theory. How are $\mathcal{T}_{\text {cons }}^{E}$-satisfiability and $\mathcal{T}_{\text {cons }}^{E}$-validity of a formula φ related to the satisfiability and validity of φ with respect to \mathcal{T}^{E} and $\mathcal{T}_{\text {cons }}$? (5 points)
3.) Let π be the program while $j \neq n$ do $q:=q+k ; k:=k+2 ; j:=j+1$ od .
(a) Use the operator wp to compute a formula that specifies all states for which program π terminates. Note that this task determines the postcondition that you have to use. Remember that $\operatorname{wp}($ while e do p od, $G)=\exists i\left(i \geq 0 \wedge F_{i}\right)$, where $F_{0}=\neg e \wedge G$ and $F_{i+1}=e \wedge \operatorname{wp}\left(p, F_{i}\right)$.
(5 points)
(b) Use the annotation calculus to show that the assertion

$$
\{n \geq 0\} q:=0 ; k:=1 ; j:=0 ; \pi\left\{q=n^{2}\right\}
$$

is true regarding total correctness. Use $0 \leq j \leq n \wedge k=2 j+1 \wedge q=j^{2}$ as invariant. Remember the annotation rule while e do \cdots od $\mapsto\{\operatorname{Inv}\}$ while e do $\left\{\operatorname{Inv} \wedge e \wedge t=t_{0}\right\} \cdots\left\{\operatorname{Inv} \wedge\left(e \rightarrow 0 \leq t<t_{0}\right)\right\} \circ d\{\operatorname{Inv} \wedge \neg e\}$

4.) Simulation

Let $M_{1}=\left(S_{1}, I_{1}, R_{1}, L_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, R_{2}, L_{2}\right)$ be two Kripke structures.
Remember, a relation $H \subseteq S_{1} \times S_{2}$ is a simulation relation if for each $\left(s, s^{\prime}\right) \in H$ it holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H$.

Further remember, M_{2} simulates M_{1} (denoted as $M_{1} \leq M_{2}$), if there is a simulation relation $H \subseteq S_{1} \times S_{2}$ such that

- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H$.

In the following, we say that H witnesses the similarity of M_{1} and M_{2} in case H is a simulation relation from M_{1} to M_{2} that satisfies the condition stated above.
(a) Provide a non-empty simulation relation H that witnesses $M_{1} \leq M_{2}$, where M_{1} and M_{2} are shown below (M_{1} on the left, M_{2} on the right), the initial state of M_{1} is s_{0}, the initial state of M_{2} is t_{0} :

Kripke structure M_{1} :

Kripke structure M_{2} :

(b) Consider Kripke structure M_{2} from Exercise (a).

Determine on which states t_{i} the following LTL formulae hold:
i. Fc
ii. $\mathbf{G}(\mathrm{b} \vee \mathrm{c})$
iii. $\mathbf{G}(\mathbf{F b})$
iv. $\mathbf{G}(\mathrm{b} \rightarrow(\mathbf{X a} \rightarrow \mathbf{X b}))$
v. $\mathrm{a} \mathbf{U}(\mathrm{b} \mathbf{U c})$
(5 points)
(c) Background. Consider the simple model of a process on the right: The process is either in state N or in state C .

Consider the system of N parallel processes P^{N} in which at most one process changes state at a time: We describe the system's state by counting the number of processes currently in N and C , respectively.
For example, in a system of three parallel processes P^{3}, if two processes are in state N , and one process is in state C , the corresponding configuration is $s:=(n=2, c=1)$. Possible successors are $s_{1}^{\prime}:=(n=1, c=2)$ and $s_{2}^{\prime}:=(n=3, c=0)$.
Problem. We define the Kripke structure $M^{N}=\left\langle S_{N}, I_{N}, R_{N}, L_{N}\right\rangle$ corresponding to P^{N} :

- $S_{N}=I_{N}=\{(n, c) \mid n, c \in\{0,1, \ldots, N\}$ and $n+c=N\}$
- $\left((n, c),\left(n^{\prime}, c^{\prime}\right)\right) \in R_{n}$ if and only if $n^{\prime}=n+k, c^{\prime}=c-k, k \in\{-1,0,1\}$ (at most one process moves at a time)
- $p \in L_{N}(s) \Leftrightarrow c>0$ where the set of atomic propositions $A P=\{p\}$.

We consider the systems of three and two parallel processes P^{3} and P^{2}. We define $H \subseteq S_{3} \times S_{2}$ as

$$
H=\left\{\left(\left(n_{1}, c_{1}\right),\left(n_{2}, c_{2}\right)\right) \mid \min \left(n_{1}, 1\right)=\min \left(n_{2}, 1\right) \wedge \min \left(c_{1}, 1\right)=\min \left(c_{2}, 1\right)\right\}
$$

(H encodes the idea of observing if at last one process is in the respective state.) Show that H witnesses $M^{3} \leq M^{2}$.

