6.0/4.0 VU Formale Methoden der Informatik 185.291 December, 52014				
$\underbrace{\text { dem }}_{\substack{\text { Kennaah) } \\ \text { (study id) }}}$	$\underset{\substack{\text { Matrikelummer } \\ \text { (student id) }}}{\text { at }}$	Familienname (family name)	Vorname (first name)	$\begin{gathered} \substack{\text { Curppe } \\ \text { curamen }} \\ \mathbf{A} \end{gathered}$

1.) Consider the following problem:

BOTH-HALT

INSTANCE: A triple $\left(\Pi_{1}, \Pi_{2}, I\right)$, where I is a string and Π_{1}, Π_{2} are programs that take a string as input.
QUESTION: Is it true that Π_{1} halts on I and Π_{2} halts on I ?
Provide a reduction from BOTH-HALT to HALTING. Argue formally that your reduction is correct.
2.) (a) Prove or refute the following EUF-formula $\varphi^{E U F}$:

$$
F(F(F(a))) \doteq F(a) \wedge F(F(a)) \doteq a \rightarrow F(a) \doteq a
$$

In case $\varphi^{E U F}$ is valid, give a proof. Otherwise give a counterexample, i.e., an EUFinterpretation I which falsifies $\varphi^{E U F}$. Argue formally that $\varphi^{E U F}$ is false under I.
(10 points)
(b) Apply Ackermann's reduction to the following EUF-formula ψ :

$$
p(a, F(b)) \wedge F(F(c)) \doteq G(G(b)) \rightarrow p(a, c)
$$

Hint: Treat uninterpreted predicates correctly.
(4 points)
(c) Let φ be a formula, let I be an interpretation for φ, and let M be a model of φ. Explain what I and M have in common. Explain the difference between a model and an interpretation. Is it possible that I is equal to M ?
3.) (a) Show that the axioms $\{G[v / e]\} v:=e\{G\}$ and $\{F\} v:=e\left\{\exists v^{\prime}\left(F\left[v / v^{\prime}\right] \wedge v=e\left[v / v^{\prime}\right]\right)\right\}$ are equivalent, i.e., that a complete calculus needs only one of the axioms. (7 points)
(b) Show that the following program terminates, if we assume that $b=(c+1)^{3} \wedge 0 \leq c^{3} \leq a$ is a loop invariant.
Remember the annotation rule

$b:=1 ; c:=0 ;$
while $b \leq a$ do
$d:=3 * c+6$;
$c:=c+1 ;$
$b:=b+c * d+1$
od
4.) (a) Provide a non-empty simulation relation H that witnesses $M_{1} \leq M_{2}$, where M_{1} and M_{2} are shown below (M_{1} on the left, M_{2} on the right), the initial state of M_{1} is s_{0}, the initial state of M_{2} is t_{0} :

Kripke structure M_{1} :

(4 points)
(b) State a Kripke Structure which statisfies all of the following 4 formulae:
i. $\mathbf{G F} \neg b$
ii. $\mathbf{G F} \neg a$
iii. $\mathbf{G F}(a \wedge b)$
iv. $\mathbf{G}(a \mathbf{U} b)$
(4 points)
(c) State two Kripke structures A and B such that B simulates A and A simulates B but A and B are not bisimilar, i.e. $A \leq B$ and $B \leq A$ but not $A \equiv B$. Argue why in your example A and B are not bisimilar.

DEFINITIONS

Let $M_{1}=\left(S_{1}, I_{1}, R_{1}, L_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, R_{2}, L_{2}\right)$ be two Kripke structures.

Simulation

A relation $H \subseteq S_{1} \times S_{2}$ is a simulation relation if for each $\left(s, s^{\prime}\right) \in H$ holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H$.
M_{2} simulates M_{1} (denoted as $M_{1} \leq M_{2}$), if there is a simulation relation $H \subseteq S_{1} \times S_{2}$ such that
- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H$.

We say that H witnesses the similarity of M_{1} and M_{2} in case H is a simulation relation from M_{1} to M_{2} that satisfies the condition stated above.

Bisimulation

A relation $H^{\prime} \subseteq S_{1} \times S_{2}$ is a bisimulation relation if for each $\left(s, s^{\prime}\right) \in H^{\prime}$ holds:

- $L_{1}(s)=L_{2}\left(s^{\prime}\right)$, and
- for each $(s, t) \in R_{1}$ there is a $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ such that $\left(t, t^{\prime}\right) \in H^{\prime}$, and
- for each $\left(s^{\prime}, t^{\prime}\right) \in R_{2}$ there is a $(s, t) \in R_{1}$ such that $\left(t, t^{\prime}\right) \in H^{\prime}$.
M_{1} and M_{2} are bisimilar (denoted as $M_{1} \equiv M_{2}$) if there is a bisimulation relation $H^{\prime} \subseteq$ $S_{1} \times S_{2}$ such that
- for each initial state $s \in I_{1}$ there is an initial state $s^{\prime} \in I_{2}$ with $\left(s, s^{\prime}\right) \in H^{\prime}$, and
- for each initial state $s^{\prime} \in I_{2}$ there is an initial state $s \in I_{1}$ with $\left(s, s^{\prime}\right) \in H^{\prime}$.

